Recursos de colección
Project Euclid (Hosted at Cornell University Library) (191.996 recursos)
Hiroshima Mathematical Journal
Hiroshima Mathematical Journal
Kubo, Akira; Onda, Kensuke; Taketomi, Yuichiro; Tamaru, Hiroshi
The moduli space of left-invariant pseudo-Riemannian metrics on a given
Lie group is defined as the orbit space of a certain isometric action on some pseudo-
Riemannian symmetric space. In terms of the moduli space, we formulate a procedure
to obtain a generalization of Milnor frames for left-invariant pseudo-Riemannian
metrics on a given Lie group. This procedure is an analogue of the recent studies
on left-invariant Riemannian metrics. In this paper, we describe the orbit space of the
action of a particular parabolic subgroup, and then apply it to obtain a generalization
of Milnor frames for so-called the Lie groups of real hyperbolic spaces, and also for...
Kuno, Erika
Hensel-Przytycki-Webb proved that the curve graphs of all orientable
surfaces are 17-hyperbolic. In this paper, we show that the curve graphs of nonorientable
surfaces are 17-hyperbolic by applying Hensel-Przytycki-Webb’s argument.
We also show that the arc graphs of non-orientable surfaces are 7-hyperbolic, and arccurve
graphs of (non-)orientable surfaces are 9-hyperbolic.
Hemmi, Yutaka; Kobayashi, Teiichi
We obtain conditions for stable extendibility of some complex vector
bundles over the $(2n + 1)$-dimensional standard lens space $L^n(p) \operatorname{mod} p$, where $p$ is
a prime. Furthermore, we study stable extendibility of the bundle $\pi^*_n (\tau(\mathbf{C}P^n))$ induced
by the natural projection $\pi_n : L^n(p)\to \mathbf{C}P^n$ from the complex tangent bundle $\tau(\mathbf{C}P^n)$ of
the complex projective $n$-space $\mathbf{C}P^n$. As an application, we have a result on stable
extendibility of $\tau(\mathbf{C}P^n)$ which gives another proof of Schwarzenberger’s theorem.
Liu, Xiaojing; Horiuchi, Toshio
Let $N\ge 1, 1 \lt p \lt \infty$ and $p^*=\max(1,p-1)$. Let $\Omega$ be a bounded
domain of $\mathbf{R}^N$. We establish the strong maximum principle for the
$p$-Laplace operator with a nonlinear potential term. More precisely, we show
that every super-solution $u \in \Omega^{1, p^*}_{\mathrm{loc}}(\Omega)$
vanishes identically in $\Omega$, if $u$ is admissible and $u = 0$ a.e on a set
of positive $p$-capacity relative to $\Omega$.
Kimura, Hironobu; Tseveennamjil, Damiran
We give a description of confluence for the general Schlesinger systems (GSS)
from the view point of twistor theory. GSS is a system of nonlinear di¤erential
equations on the Grassmannian manifold $G_{2,N}(\mathbf{C}$ which is obtained,
for any partition $\lambda$ of $N$, as the integrability condition of a
connection $\nabla_\lambda$ on $\mathbf{P}^1\times G_{2,N}$ constructed using
the twistor-theoretic point of view and is known to describe isomonodromic
deformation of linear differential equations on the projective space
$\mathbf{P}^1$. For a pair of partitions $\lambda, \mu$ of $N$ such that m is
obtained from $\lambda$ by making two parts into on parts and leaving other
parts unchanged, we construct the limit process $\nabla_\lambda\to...
Kin, Eiko; Takasawa, Mitsuhiko
Let $\delta_{g,n}$ be the minimal dilation of pseudo-Anosovs defined on an
orientable surface of genus $g$ with $n$ punctures. It is proved by Tsai that
for any fixed $g\ge2$, there exists a constant $c_g$ depending on $g$ such that
\[ \frac{1}{c_g}\cdot \frac{\log n}{n} \lt \log \delta_{g,n} \lt c_g \cdot
\frac{\log n}{n} \qquad \text{for any }n\ge3 \] This means that the logarithm of
the minimal dilatation $\log \delta_{g, n}$ is on the order of $\log n/n$. We
prove that if $2g + 1$ is relatively prime to $s$ or $s + 1$ for each $0\le s\le
g$, then \[ \limsup_{n\to\infty}\frac{n(\log \delta_{g,n})}{\log n}\le 2 \]
holds. In particular, if $2g...
Paiva Barreto, Alexandre; Lima Gonçalves, Daciberg; Vendrúscolo, Daniel
In this article we classify the free involutions of every torus semi-bundle Sol
3-manifold. Moreover, we classify all the triples $M, \tau, \mathbf{R}^n$, where
$M$ is as above, $\tau$ is a free involution on $M$, and $n$ is a positive
integer, for which the Borsuk-Ulam Property holds.
Furokawa, Mikio
The once-punctured torus and the once-punctured Klein bottle are topologically
commensurable, in the sense that both of them are doubly covered by the
twice-punctured torus. In this paper, we give a condition for a faithful
type-preserving $\mathrm{PSL}(2,\mathbf{C})$-representation of the fundamental
group of the once-punctured Klein bottle to be ‘‘commensurable’’ with that of
the once-punctured torus. We also show that such a pair of
$\mathrm{PSL}(2,\mathbf{C})$-representations extend to a representation of the
fundamental group of a common quotient orbifold. Finally, we give an application
to the study of the Ford domains.
Hoai Hoang, Thanh
We work over an algebraically closed field $k$ of positive characteristic $p$.
Let $q$ be a power of $p$. Let $A$ be an $(n+1)\times(n+1)$ matrix with
coefficients $a_{ij}$ in $k$, and let $X_A$ be a hypersurface of degree $q + 1$
in the projective space $\mathbf{P}^n$ defined by $\sum a_{ij}x_i x^q_j=0$. It
is well-known that if the rank of $A$ is $n + 1$, the hypersurface $X_A$ is
projectively isomorphic to the Fermat hypersuface of degree $q + 1$. We
investigate the hypersurfaces $X_A$ when the rank of $A$ is $n$, and determine
their projective isomorphism classes.
Ueda, Hideo
This note gives a new sufficient condition of the total energy decay for the
solutions of the initial-boundary value problems to the dissipative wave
equations in exterior domains with non-compactly supported initial data. That
condition provides an example of the damping terms of the dissipative wave
equations with the total energy decay which has a smaller amplitude than those
of all examples derived from a sufficient condition in Mochizuki and Nakazawa
[Publ. Res. Inst. Math. Sci. 32 (1996), 401–414].
Mohamed Farghly, Rasha
By using an elliptic analogue of the Drinfeld coproduct, we construct the
level-$(k+1)$ representation of the elliptic quantum group
$U_{q,p}(\widehat{\mathfrak{sl}}_2)$ from the level-1 highest weight
representation. The quantum Z-algebra of level-$(k+1)$ is realized. We also find
the elliptic analogue of the condition of integrability for higher level modules
constructed by the Drinfeld coproduct. This also enables us to express
$\Delta^k(e(z))\Delta^k(e(zq^2))\dots\Delta^k(e(zq^{2(N-1)}))$ and
$\Delta^k(f(z))\Delta^k(f(zq^2))\Delta^k(f(zq^{-2}))\dots\Delta^k(f(zq^{-2(N-1)}))$
as vertex operators of the level-$(k+1)$ bosons.
Ishikawa, Masaharu; Nemoto, Keisuke
We give upper bounds of the Matveev complexities of two-bridge link complements
by constructing their spines explicitly. In particular, we determine the
complexities for an infinite sequence of two-bridge links corresponding to the
continued fractions of the form $[2,1,\dots, 1,2]$. We also give upper bounds for
the 3-manifolds obtained as meridian-cyclic branched coverings of the 3-sphere
along two-bridge links.
Jiang, Yan; Huang, Bin
Let $f$ be a transcendental meromorphic function in the complex plane
$\mathbf{C}$, and a be a nonzero complex number. We give quantitative estimates
for the characteristic function $T(r,f)$ in terms of $N(r,1/(
f^1(f^{(k)})^n-a))$, for integers $k$, $l$, $n$ greater than 1. We conclude that
$f^1(f^{(k)})^n$ assumes every nonzero finite value infinitely often.
Hirotsu, Takashi
Inoguchi, Jun-ichi; Sasahara, Toru
We classify biharmonic geodesic spheres in the Cayley projective plane.
Our results completes the classification of all biharmonic homogeneous hypersurfaces
in simply connected compact Riemannian symmetric spaces of rank 1. In addition we
show that complex Grassmannian manifolds, and exceptional Lie groups $F_4$ and $G_2$
admit proper biharmonic real hypersurfaces.
Araya, Makoto; Harada, Masaaki
Shimada and Zhang studied the existence of polarizations on some supersingular
$K3$ surfaces by reducing the existence of the polarizations to that of ternary
[12,5] codes satisfying certain conditions. In this note, we give a classification of
ternary [12,5] codes satisfying the conditions. To do this, ternary [10,5] codes are
classified for minimum weights 3 and 4.
Fukuma, Yoshiaki
Park, Jeongho
In this paper the author considers a particular type of polynomials with
integer coefficients, consisting of a perfect power and two norm forms of abelian number
fields with coprime discriminants. It is shown that such a polynomial represents every
natural number with only finitely many exceptions. The circle method is used, and the
local class field theory played a central role in estimating the singular series.
Aloui, Karam