Recursos de colección
Project Euclid (Hosted at Cornell University Library) (202.106 recursos)
Differential Integral Equations
Differential Integral Equations
Scholtes, Martin; Wittbold, Petra
We consider a class of doubly nonlinear history-dependent problems associated with the equation $$ \partial_{t}k\ast(b(v)- b(v_{0})) = \text{div}\, a(x,Dv) + f . $$ Our assumptions on the kernel $k$ include the case $k(t) = t^{-\alpha}/\Gamma(1-\alpha)$, in which case the left-hand side becomes the fractional derivative of order $\alpha\in (0,1)$ in the sense of Riemann-Liouville. Existence of entropy solutions is established for general $L^{1}-$data and Dirichlet boundary conditions. Uniqueness of entropy solutions has been shown in a previous work.
Scholtes, Martin; Wittbold, Petra
We consider a class of doubly nonlinear history-dependent problems associated with the equation $$ \partial_{t}k\ast(b(v)- b(v_{0})) = \text{div}\, a(x,Dv) + f . $$ Our assumptions on the kernel $k$ include the case $k(t) = t^{-\alpha}/\Gamma(1-\alpha)$, in which case the left-hand side becomes the fractional derivative of order $\alpha\in (0,1)$ in the sense of Riemann-Liouville. Existence of entropy solutions is established for general $L^{1}-$data and Dirichlet boundary conditions. Uniqueness of entropy solutions has been shown in a previous work.
Kim, Jae-Myoung; Kim, Yun-Ho; Lee, Jongrak
We are concerned with the following elliptic equations with variable exponents \begin{equation*} -\text{div}(\varphi(x,\nabla u))+V(x)|u|^{p(x)-2}u=\lambda f(x,u) \quad \text{in} \quad \mathbb R^{N}, \end{equation*} where the function $\varphi(x,v)$ is of type $|v|^{p(x)-2}v$ with continuous function $p: \mathbb R^{N} \to (1,\infty)$, $V: \mathbb R^{N}\to(0,\infty)$ is a continuous potential function, and $f: \mathbb R^{N}\times \mathbb R \to \mathbb R$ satisfies a Carathéodory condition. The aims of this paper are stated as follows. First, under suitable assumptions, we show the existence of at least one nontrivial weak solution and infinitely many weak solutions for the problem without the Ambrosetti and Rabinowitz condition, by applying mountain pass...
Kim, Jae-Myoung; Kim, Yun-Ho; Lee, Jongrak
We are concerned with the following elliptic equations with variable exponents \begin{equation*} -\text{div}(\varphi(x,\nabla u))+V(x)|u|^{p(x)-2}u=\lambda f(x,u) \quad \text{in} \quad \mathbb R^{N}, \end{equation*} where the function $\varphi(x,v)$ is of type $|v|^{p(x)-2}v$ with continuous function $p: \mathbb R^{N} \to (1,\infty)$, $V: \mathbb R^{N}\to(0,\infty)$ is a continuous potential function, and $f: \mathbb R^{N}\times \mathbb R \to \mathbb R$ satisfies a Carathéodory condition. The aims of this paper are stated as follows. First, under suitable assumptions, we show the existence of at least one nontrivial weak solution and infinitely many weak solutions for the problem without the Ambrosetti and Rabinowitz condition, by applying mountain pass...
do Ó, João Marcos; de Albuquerque, José Carlos
In this paper, we prove the existence of a nonnegative ground state solution to the following class of coupled systems involving Schrödinger equations with square root of the Laplacian $$ \begin{cases} (-\Delta)^{ \frac 12 } u+V_{1}(x)u=f_{1}(u)+\lambda(x)v, & x\in\mathbb{R},\\ (-\Delta)^{ \frac 12 } v+V_{2}(x)v=f_{2}(v)+\lambda(x)u, & x\in\mathbb{R}, \end{cases} $$ where the nonlinearities $f_{1}(s)$ and $f_{2}(s)$ have exponential critical growth of the Trudinger-Moser type, the potentials $V_{1}(x)$ and $V_{2}(x)$ are nonnegative and periodic. Moreover, we assume that there exists $\delta\in (0,1)$ such that $\lambda(x)\leq\delta\sqrt{V_{1}(x)V_{2}(x)}$. We are also concerned with the existence of ground states when the potentials are asymptotically periodic. Our approach is...
do Ó, João Marcos; de Albuquerque, José Carlos
In this paper, we prove the existence of a nonnegative ground state solution to the following class of coupled systems involving Schrödinger equations with square root of the Laplacian $$ \begin{cases} (-\Delta)^{ \frac 12 } u+V_{1}(x)u=f_{1}(u)+\lambda(x)v, & x\in\mathbb{R},\\ (-\Delta)^{ \frac 12 } v+V_{2}(x)v=f_{2}(v)+\lambda(x)u, & x\in\mathbb{R}, \end{cases} $$ where the nonlinearities $f_{1}(s)$ and $f_{2}(s)$ have exponential critical growth of the Trudinger-Moser type, the potentials $V_{1}(x)$ and $V_{2}(x)$ are nonnegative and periodic. Moreover, we assume that there exists $\delta\in (0,1)$ such that $\lambda(x)\leq\delta\sqrt{V_{1}(x)V_{2}(x)}$. We are also concerned with the existence of ground states when the potentials are asymptotically periodic. Our approach is...
Behncke, Horst; Hinton, Don
We consider the problem of the a second order singular differential operator with complex coefficients in the discrete spectrum case. The Titchmarsh-Weyl m-function is constructed without the use of nesting circles, and it is then used to give a representation of the resolvent operator. Under conditions on the growth of the coefficients, the resolvent operator is proved to be Hilbert-Schmidt and the root subspaces are shown to be complete in the associated Hilbert space. The operator is considered on both the half line and whole line cases.
Behncke, Horst; Hinton, Don
We consider the problem of the a second order singular differential operator with complex coefficients in the discrete spectrum case. The Titchmarsh-Weyl m-function is constructed without the use of nesting circles, and it is then used to give a representation of the resolvent operator. Under conditions on the growth of the coefficients, the resolvent operator is proved to be Hilbert-Schmidt and the root subspaces are shown to be complete in the associated Hilbert space. The operator is considered on both the half line and whole line cases.
Strütt, David
We study the system of linear partial differential equations given by \[ dw+a\wedge w=f, \] on open subsets of $\mathbb R^n$, together with the algebraic equation \[ da\wedge u=\beta, \] where $a$ is a given $1$-form, $f$ is a given $(k+1)$-form, $\beta$ is a given $k+2$-form, $w$ and $u$ are unknown $k$-forms. We show that if $\text{rank}[da]\geq 2(k+1)$ those equations have at most one solution, if $\text{rank}[da] \equiv 2m \geq 2(k+2)$ they are equivalent with $\beta=df+a\wedge f$ and if $\text{rank}[da]\equiv 2 m\geq2(n-k)$ the first equation always admits a solution. ¶ Moreover, the differential equation is closely linked to the Poincaré...
Strütt, David
We study the system of linear partial differential equations given by \[ dw+a\wedge w=f, \] on open subsets of $\mathbb R^n$, together with the algebraic equation \[ da\wedge u=\beta, \] where $a$ is a given $1$-form, $f$ is a given $(k+1)$-form, $\beta$ is a given $k+2$-form, $w$ and $u$ are unknown $k$-forms. We show that if $\text{rank}[da]\geq 2(k+1)$ those equations have at most one solution, if $\text{rank}[da] \equiv 2m \geq 2(k+2)$ they are equivalent with $\beta=df+a\wedge f$ and if $\text{rank}[da]\equiv 2 m\geq2(n-k)$ the first equation always admits a solution. ¶ Moreover, the differential equation is closely linked to the Poincaré...
Abidi, Hammadi; Paicu, Marius
We study, in this paper, the axisymmetric $3$-D Navier-Stokes system where the horizontal viscosity is zero. We prove the existence of a unique global solution to the system with initial data in Lebesgue spaces.
Abidi, Hammadi; Paicu, Marius
We study, in this paper, the axisymmetric $3$-D Navier-Stokes system where the horizontal viscosity is zero. We prove the existence of a unique global solution to the system with initial data in Lebesgue spaces.
Yamazaki, Kazuo
We derive a Biot-Savart law type identity for the horizontal components of the solution to the fluid system of equations with incompressibility in general dimension. Along with another new decomposition of non-linear terms, we give its application to derive two regularity criteria for the four-dimensional magneto-hydrodynamics system, in particular a criteria in terms of two velocity field components, two magnetic field components and two partial derivatives of the other two magnetic field components in a scaling-invariant norm. It is an open problem to obtain a criterion in terms of just two velocity field components and two partial derivatives of two...
Bortot, César Augusto; Corrêa, Wellington José
In this paper, we study the exponential stability for the semilinear defocusing Schrödinger equation with locally distributed damping on a bounded domain $\Omega \subset \mathbb{R}^n$ with smooth boundary $\partial \Omega$. The proofs are based on a result of unique continuation property due to Cavalcanti et al. [15] and on a forced smoothing effect due to Aloui [2] combined with ideas from Cavalcanti et. al. [15], [16] adapted to the present context.
Amadori, Anna Lisa; Gladiali, Francesca; Grossi, Massimo
In this paper, we prove an existence result to the problem $$\left\{\begin{array}{ll} -\Delta u = |u|^{p-1} u \qquad & \text{ in } \Omega , \\ u= 0 & \text{ on } \partial\Omega, \end{array} \right. $$ where $\Omega$ is a bounded domain in $\mathbb R^{N}$ which is a perturbation of the annulus. Then there exists a sequence $p_1 < p_2 < \cdots$ with $\lim\limits_{k\rightarrow+\infty}p_k=+\infty$ such that for any real number $p > 1$ and $p\ne p_k$ there exist at least one solution with $m$ nodal zones. In doing so, we also investigate the radial nodal solution in an annulus: we provide...
Gonçalves, José V.; Carvalho, Marcos L.; Santos, Carlos Alberto
This paper deals with the existence of positive solutions for a class of quasilinear elliptic systems involving the $\Phi$-Laplacian operator and convex-concave singular terms. Our approach is based on the generalized Galerkin Method along with perturbation techniques and comparison arguments in the setting of Orlicz-Sobolev spaces.
Allen, Mark
We study a nonlocal nonlinear parabolic problem with a fractional time derivative. We prove a Krylov-Safonov type result; mainly, we prove Hölder regularity of solutions. Our estimates remain uniform as the order of the fractional time derivative $\alpha \to 1$.
Giga, Yoshikazu; Ibrahim, Slim; Shen, Shengyi; Yoneda, Tsuyoshi
We study a two fluid system which models the motion of a charged fluid with Rayleigh friction, and in the presence of an electro-magnetic field satisfying Maxwell's equations. We study the well-posedness of the system in both space dimensions two and three. Regardless of the size of the initial data, we first prove the global well-posedness of the Cauchy problem when the space dimension is two. However, in space dimension three, we construct global weak-solutions à la Leray, and we prove the local well-posedness of Kato-type solutions. These solutions turn out to be global when the initial data are sufficiently...
Kukavica, Igor; Uğurlu, Kerem; Ziane, Mohammed
We investigate the convergence of the Galerkin approximations for the stochastic Navier-Stokes equations in an open bounded domain $\mathcal{O}$ with the non-slip boundary condition. We prove that \begin{equation*} \mathbb{E} \Big [ \sup_{t \in [0,T]} \phi_1(\lVert (u(t)-u^n(t)) \rVert^2_V) \Big ] \rightarrow 0, \end{equation*} as $n \rightarrow \infty$ for any deterministic time $T > 0$ and for a specified moment function $\phi_1$ where $u^n(t)$ denotes the Galerkin approximations of the solution $u(t)$. Also, we provide a result on uniform boundedness of the moment $\mathbb{E} [ \sup_{t \in [0,T]} \phi(\lVert u(t) \rVert^2_V) ] $ where $\phi$ grows as a single logarithm at infinity....
Nakata, Yukihiko; Röst, Gergely
Assuming a general distribution for the sojourn time in the infectious class, we consider an SIS type epidemic model formulated as a scalar integral equation. We prove that the endemic equilibrium of the model is globally asymptotically stable whenever it exists, solving the conjecture of Hethcote and van den Driessche (1995) for the case of nonfatal diseases.