Recursos de colección
Caltech Authors (157.532 recursos)
Repository of works by Caltech published authors.
Group = Caltech Theory
Repository of works by Caltech published authors.
Group = Caltech Theory
Lloyd, Seth; Preskill, John
Almheiri et al. have emphasized that otherwise reasonable beliefs about black hole evaporation are incompatible with the monogamy of quantum entanglement, a general property of quantum mechanics. We investigate the final-state projection model of black hole evaporation proposed by Horowitz and Maldacena, pointing out that this model admits cloning of quantum states and polygamous entanglement, allowing unitarity of the evaporation process to be reconciled with smoothness of the black hole event horizon. Though the model seems to require carefully tuned dynamics to ensure exact unitarity of the black hole S-matrix, for a generic final-state boundary condition the deviations from unitarity...
Remmen, Grant N.; Carroll, Sean M.
We address the issue of how many e-folds we would naturally expect if inflation occurred at an energy scale of order 10^(16) GeV. We use the canonical measure on trajectories in classical phase space, specialized to the case of flat universes with a single scalar field. While there is no exact analytic expression for the measure, we are able to derive conditions that determine its behavior. For a quadratic potential V(ϕ)=m^2ϕ^2/2 with m=2×10^(13) GeV and cutoff at M_(Pl)=2.4×10^(18) GeV, we find an expectation value of 2×1010 e-folds on the set of FRW trajectories. For cosine inflation V(ϕ)=Λ^4[1−cos(ϕ/f)] with f=1.5×10^(19) GeV,...
Deser, S.
This self-contained pedagogical simple explicit 6-step derivation of the Schwarzschild solution, in “3+1” formulation and conformal spatial gauge, (almost) avoids all affinity, curvature and index gymnastics.
Dimofte, Tudor; Gaiotto, Davide; Gukov, Sergei
We propose a dictionary between geometry of triangulated 3-manifolds and physics of three-dimensional N=2 gauge theories. Under this duality, standard operations on triangulated 3-manifolds and various invariants thereof (classical as well as quantum) find a natural interpretation in field theory. For example, independence of the SL(2) Chern-Simons partition function on the choice of triangulation translates to a statement that S^3_b partition functions of two mirror 3d N=2 gauge theories are equal. Three-dimensional N=2 field theories associated to 3-manifolds can be thought of as theories that describe boundary conditions and duality walls in four-dimensional N=2 SCFTs, thus making the whole construction...
Nakayama, Yu
We present various (0, 2) heterotic supercurrent supermultiplets in (1 + 1) dimensional quantum field theories. From the minimal supercurrent supermultiplets, we deduce conditions on symmetry enhancement such as Lorentz invariance, (chiral) dilatation invariance, R-invariance, (chiral) conformal invariance and their various combinations. Our construction covers many interesting and/or exotic possibilities such as Lifshitz supersymmetry and warped superconformal algebra. We also discuss the corresponding supergravity by gauging the supercurrent supermultiplet. In particular, we propose a novel class of heterotic supergravity based on the virial supercurrent.
Gadde, Abhijit; Liendo, Pedro; Rastelli, Leonardo; Yan, Wenbin
We study the integrability properties of planar N=2 superconformal field theories in four dimensions. We show that the spin chain associated to the planar dilation operator of N=2 superconformal QCD fails to be integrable at two loops. In our analysis we focus on a closed SU(2|1) sector, whose two-loop spin chain we fix by symmetry arguments (up to a few undetermined coefficients). It turns out that the Yang-Baxter equation for magnon scattering is not satisfied in this sector. On the other hand, we suggest that the closed SU(2,1|2) sector, which exists in any N=2 superconformal gauge theory, may be integrable...
Bélanger, Geneviève; Ellwanger, Ulrich; Gunion, John F.; Jiang, Yun; Kraml, Sabine; Schwarz, John H.
We discuss NMSSM scenarios in which the lightest Higgs boson h 1 is consistent with the small LEP excess at ~ 98 GeV in e^+ e^− → Zh with h→bb and the heavier Higgs boson h 2 has the primary features of the LHC Higgs-like signals at 125 GeV, including an enhanced γγ rate. Verification or falsification of the 98 GeV h_1 may be possible at the LHC during the 14 TeV run. The detection of the other NMSSM Higgs bosons at the LHC and future colliders is also discussed, as well as dark matter properties of the scenario under...