Mostrando recursos 1 - 20 de 48

  1. Involutions in algebras related to second duals of hypergroup algebras

    Medghalchi, Alireza; Ramezani, Ramin
    Let $K$ be a hypergroup. The purpose of this article is to study the question of involutions on algebras $M(K)^{**}$ , $L(K)^{**}$ , and $L_{c}(K)^{**}$ . We show that the natural involution of $M(K)$ has the canonical extension to $M(K)^{**}$ if and only if the natural involution of $L(K)$ has the canonical extension to $L(K)^{**}$ . Also, we give necessary and sufficient conditions for $M(K)^{**}$ and $L(K)^{**}$ to admit an involution extending the natural involution of $M(K)$ when $K$ is left amenable. Finally, we find the necessary and sufficient conditions for $L_{c}(K)^{**}$ to admit an involution.

  2. Involutions in algebras related to second duals of hypergroup algebras

    Medghalchi, Alireza; Ramezani, Ramin
    Let $K$ be a hypergroup. The purpose of this article is to study the question of involutions on algebras $M(K)^{**}$ , $L(K)^{**}$ , and $L_{c}(K)^{**}$ . We show that the natural involution of $M(K)$ has the canonical extension to $M(K)^{**}$ if and only if the natural involution of $L(K)$ has the canonical extension to $L(K)^{**}$ . Also, we give necessary and sufficient conditions for $M(K)^{**}$ and $L(K)^{**}$ to admit an involution extending the natural involution of $M(K)$ when $K$ is left amenable. Finally, we find the necessary and sufficient conditions for $L_{c}(K)^{**}$ to admit an involution.

  3. Involutions in algebras related to second duals of hypergroup algebras

    Medghalchi, Alireza; Ramezani, Ramin
    Let $K$ be a hypergroup. The purpose of this article is to study the question of involutions on algebras $M(K)^{**}$ , $L(K)^{**}$ , and $L_{c}(K)^{**}$ . We show that the natural involution of $M(K)$ has the canonical extension to $M(K)^{**}$ if and only if the natural involution of $L(K)$ has the canonical extension to $L(K)^{**}$ . Also, we give necessary and sufficient conditions for $M(K)^{**}$ and $L(K)^{**}$ to admit an involution extending the natural involution of $M(K)$ when $K$ is left amenable. Finally, we find the necessary and sufficient conditions for $L_{c}(K)^{**}$ to admit an involution.

  4. Minimal reducing subspaces of an operator-weighted shift

    Hazarika, Munmun; Gogoi, Pearl S.
    We introduce a family $\mathcal{T}$ consisting of invertible matrices with exactly one nonzero entry in each row and each column. The elements of $\mathcal{T}$ are possibly mutually noncommuting, and they need not be normal or self-adjoint. We consider an operator-valued unilateral weighted shift $W$ with a uniformly bounded sequence of weights belonging to $\mathcal{T}$ , and we describe its minimal reducing subspaces.

  5. Minimal reducing subspaces of an operator-weighted shift

    Hazarika, Munmun; Gogoi, Pearl S.
    We introduce a family $\mathcal{T}$ consisting of invertible matrices with exactly one nonzero entry in each row and each column. The elements of $\mathcal{T}$ are possibly mutually noncommuting, and they need not be normal or self-adjoint. We consider an operator-valued unilateral weighted shift $W$ with a uniformly bounded sequence of weights belonging to $\mathcal{T}$ , and we describe its minimal reducing subspaces.

  6. Minimal reducing subspaces of an operator-weighted shift

    Hazarika, Munmun; Gogoi, Pearl S.
    We introduce a family $\mathcal{T}$ consisting of invertible matrices with exactly one nonzero entry in each row and each column. The elements of $\mathcal{T}$ are possibly mutually noncommuting, and they need not be normal or self-adjoint. We consider an operator-valued unilateral weighted shift $W$ with a uniformly bounded sequence of weights belonging to $\mathcal{T}$ , and we describe its minimal reducing subspaces.

  7. Supporting vectors of continuous linear operators

    Cobos-Sánchez, Clemente; García-Pacheco, Francisco Javier; Moreno-Pulido, Soledad; Sáez-Martínez, Sol
    The set of supporting vectors of a continuous linear operator, that is, the normalized vectors at which the operator attains its norm, is decomposed into its convex components. In the complex case, the set of supporting vectors of a nonzero functional is proved to be path-connected. We also introduce the concept of generalized supporting vectors for a sequence of operators as the normalized vectors that maximize the summation of the squared norm of those operators. We determine the set of generalized supporting vectors for the particular case of a finite sequence of real matrices. Finally, we unveil the relation between...

  8. Supporting vectors of continuous linear operators

    Cobos-Sánchez, Clemente; García-Pacheco, Francisco Javier; Moreno-Pulido, Soledad; Sáez-Martínez, Sol
    The set of supporting vectors of a continuous linear operator, that is, the normalized vectors at which the operator attains its norm, is decomposed into its convex components. In the complex case, the set of supporting vectors of a nonzero functional is proved to be path-connected. We also introduce the concept of generalized supporting vectors for a sequence of operators as the normalized vectors that maximize the summation of the squared norm of those operators. We determine the set of generalized supporting vectors for the particular case of a finite sequence of real matrices. Finally, we unveil the relation between...

  9. Supporting vectors of continuous linear operators

    Cobos-Sánchez, Clemente; García-Pacheco, Francisco Javier; Moreno-Pulido, Soledad; Sáez-Martínez, Sol
    The set of supporting vectors of a continuous linear operator, that is, the normalized vectors at which the operator attains its norm, is decomposed into its convex components. In the complex case, the set of supporting vectors of a nonzero functional is proved to be path-connected. We also introduce the concept of generalized supporting vectors for a sequence of operators as the normalized vectors that maximize the summation of the squared norm of those operators. We determine the set of generalized supporting vectors for the particular case of a finite sequence of real matrices. Finally, we unveil the relation between...

  10. A quantitative version of the Johnson–Rosenthal theorem

    Chen, Dongyang
    Let $X,Y$ be Banach spaces. We define \begin{equation*}\alpha_{Y}(X)=\sup\{\vert T^{-1}\vert^{-1}:T:Y\rightarrow X\mbox{ is an isomorphism with }\vert T\vert \leq1\}.\end{equation*} If there is no isomorphism from $Y$ to $X$ , we set $\alpha_{Y}(X)=0$ , and ¶ \begin{equation*}\gamma_{Y}(X)=\sup\{\delta(T):T:X\rightarrow Y\mbox{ is asurjective operator with }\vert T\vert \leq1\},\end{equation*} where $\delta(T)=\sup\{\delta\gt 0:\delta B_{Y}\subseteq TB_{X}\}$ . If there is no surjective operator from $X$ onto $Y$ , we set $\gamma_{Y}(X)=0$ . We prove that for a separable space $X$ , $\alpha_{l_{1}}(X^{*})=\gamma_{c_{0}}(X)$ and $\alpha_{L_{1}}(X^{*})=\gamma_{C(\Delta)}(X)=\gamma_{C[0,1]}(X)$ .

  11. A quantitative version of the Johnson–Rosenthal theorem

    Chen, Dongyang
    Let $X,Y$ be Banach spaces. We define \begin{equation*}\alpha_{Y}(X)=\sup\{\vert T^{-1}\vert^{-1}:T:Y\rightarrow X\mbox{ is an isomorphism with }\vert T\vert \leq1\}.\end{equation*} If there is no isomorphism from $Y$ to $X$ , we set $\alpha_{Y}(X)=0$ , and ¶ \begin{equation*}\gamma_{Y}(X)=\sup\{\delta(T):T:X\rightarrow Y\mbox{ is asurjective operator with }\vert T\vert \leq1\},\end{equation*} where $\delta(T)=\sup\{\delta\gt 0:\delta B_{Y}\subseteq TB_{X}\}$ . If there is no surjective operator from $X$ onto $Y$ , we set $\gamma_{Y}(X)=0$ . We prove that for a separable space $X$ , $\alpha_{l_{1}}(X^{*})=\gamma_{c_{0}}(X)$ and $\alpha_{L_{1}}(X^{*})=\gamma_{C(\Delta)}(X)=\gamma_{C[0,1]}(X)$ .

  12. A quantitative version of the Johnson–Rosenthal theorem

    Chen, Dongyang
    Let $X,Y$ be Banach spaces. We define \begin{equation*}\alpha_{Y}(X)=\sup\{\vert T^{-1}\vert^{-1}:T:Y\rightarrow X\mbox{ is an isomorphism with }\vert T\vert \leq1\}.\end{equation*} If there is no isomorphism from $Y$ to $X$ , we set $\alpha_{Y}(X)=0$ , and ¶ \begin{equation*}\gamma_{Y}(X)=\sup\{\delta(T):T:X\rightarrow Y\mbox{ is asurjective operator with }\vert T\vert \leq1\},\end{equation*} where $\delta(T)=\sup\{\delta\gt 0:\delta B_{Y}\subseteq TB_{X}\}$ . If there is no surjective operator from $X$ onto $Y$ , we set $\gamma_{Y}(X)=0$ . We prove that for a separable space $X$ , $\alpha_{l_{1}}(X^{*})=\gamma_{c_{0}}(X)$ and $\alpha_{L_{1}}(X^{*})=\gamma_{C(\Delta)}(X)=\gamma_{C[0,1]}(X)$ .

  13. The weak Haagerup property for $C^{*}$ -algebras

    Meng, Qing
    We define and study the weak Haagerup property for $C^{*}$ -algebras in this article. A $C^{*}$ -algebra with the Haagerup property always has the weak Haagerup property. We prove that a discrete group has the weak Haagerup property if and only if its reduced group $C^{*}$ -algebra also has that property. Moreover, we consider the permanence of the weak Haagerup property under a few canonical constructions of $C^{*}$ -algebras.

  14. The weak Haagerup property for $C^{*}$ -algebras

    Meng, Qing
    We define and study the weak Haagerup property for $C^{*}$ -algebras in this article. A $C^{*}$ -algebra with the Haagerup property always has the weak Haagerup property. We prove that a discrete group has the weak Haagerup property if and only if its reduced group $C^{*}$ -algebra also has that property. Moreover, we consider the permanence of the weak Haagerup property under a few canonical constructions of $C^{*}$ -algebras.

  15. The weak Haagerup property for $C^{*}$ -algebras

    Meng, Qing
    We define and study the weak Haagerup property for $C^{*}$ -algebras in this article. A $C^{*}$ -algebra with the Haagerup property always has the weak Haagerup property. We prove that a discrete group has the weak Haagerup property if and only if its reduced group $C^{*}$ -algebra also has that property. Moreover, we consider the permanence of the weak Haagerup property under a few canonical constructions of $C^{*}$ -algebras.

  16. Orthogonal-preserving and surjective cubic stochastic operators

    Mukhamedov, Farrukh; Fadillah Embong, Ahmad; Rosli, Azizi
    In the present paper, we consider cubic stochastic operators, and prove that the surjectivity of such operators is equivalent to their orthogonal-preserving property. In the last section we provide a full description of orthogonal-preserving (respectively, surjective) cubic stochastic operators on the $2$ -dimensional simplex.

  17. Orthogonal-preserving and surjective cubic stochastic operators

    Mukhamedov, Farrukh; Fadillah Embong, Ahmad; Rosli, Azizi
    In the present paper, we consider cubic stochastic operators, and prove that the surjectivity of such operators is equivalent to their orthogonal-preserving property. In the last section we provide a full description of orthogonal-preserving (respectively, surjective) cubic stochastic operators on the $2$ -dimensional simplex.

  18. Orthogonal-preserving and surjective cubic stochastic operators

    Mukhamedov, Farrukh; Fadillah Embong, Ahmad; Rosli, Azizi
    In the present paper, we consider cubic stochastic operators, and prove that the surjectivity of such operators is equivalent to their orthogonal-preserving property. In the last section we provide a full description of orthogonal-preserving (respectively, surjective) cubic stochastic operators on the $2$ -dimensional simplex.

  19. On Fredholm completions of partial operator matrices

    Hai, Guojun; Zhang, Nan
    The aim of this article is to study the Fredholm completion problem of two-by-two partial operator matrices in which the lower-left entry is unspecified and others are specified. By using the methods of operator matrix representation and operator equation, we obtain necessity and sufficiency conditions for the partial operator matrices to have a Fredholm completion with the property that the lower-right entry of its Fredholm inverses is specified.

  20. On Fredholm completions of partial operator matrices

    Hai, Guojun; Zhang, Nan
    The aim of this article is to study the Fredholm completion problem of two-by-two partial operator matrices in which the lower-left entry is unspecified and others are specified. By using the methods of operator matrix representation and operator equation, we obtain necessity and sufficiency conditions for the partial operator matrices to have a Fredholm completion with the property that the lower-right entry of its Fredholm inverses is specified.

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.