Recursos de colección

Caltech Authors (147.369 recursos)

Repository of works by Caltech published authors.

Group = LIGO

Mostrando recursos 1 - 20 de 164

  1. Thermal modelling of Advanced LIGO test masses

    Wang, Haoyu; Blair, Carl; Dovale Álvarez, M.; Brooks, A.; Kasprzack, M. F.; Ramette, J.; Meyers, P. M.; Kaufer, S.; O’Reilly, B.; Mow-Lowry, C. M.; Freise, A.
    High-reflectivity fused silica mirrors are at the epicentre of today's advanced gravitational wave detectors. In these detectors, the mirrors interact with high power laser beams. As a result of finite absorption in the high reflectivity coatings the mirrors suffer from a variety of thermal effects that impact on the detectors' performance. We propose a model of the Advanced LIGO mirrors that introduces an empirical term to account for the radiative heat transfer between the mirror and its surroundings. The mechanical mode frequency is used as a probe for the overall temperature of the mirror. The thermal transient after power build-up...

  2. A Surrogate model of gravitational waveforms from numerical relativity simulations of precessing binary black hole mergers

    Blackman, Jonathan; Field, Scott E.; Scheel, Mark A.; Galley, Chad R.; Hemberger, Daniel A.; Schmidt, Patricia; Smith, Rory
    We present the first surrogate model for gravitational waveforms from the coalescence of precessing binary black holes. We call this surrogate model NRSur4d2s. Our methodology significantly extends recently introduced reduced-order and surrogate modeling techniques, and is capable of directly modeling numerical relativity waveforms without introducing phenomenological assumptions or approximations to general relativity. Motivated by GW150914, LIGO’s first detection of gravitational waves from merging black holes, the model is built from a set of 276 numerical relativity (NR) simulations with mass ratios q ≤ 2, dimensionless spin magnitudes up to 0.8, and the restriction that the initial spin of the smaller...

  3. Gravitational waves from hot young rapidly rotating neutron stars

    Owen, Benjamin; Lindblom, Lee; Cutler, Curt; Schutz, Bernard; Vecchio, Alberto; Andersson, Nils
    Gravitational radiation drives an instability in the r-modes of young rapidly rotating neutron stars. This instability is expected to carry away most of the angular momentum of the star by gravitational radiation emission, leaving a star rotating at about 100 Hz. In this paper we model in a simple way the development of the instability and evolution of the neutron star during the year-long spindown phase. This allows us to predict the general features of the resulting gravitational waveform. We show that a neutron star formed in the Virgo cluster could be detected by the LIGO and VIRGO gravitational wave...

  4. Quantum correlation measurements in interferometric gravitational-wave detectors

    Martynov, D. V.; Abbott, B. P.; Abbott, R.; Adhikari, R. X.; Anderson, S. B.; Ananyeva, A.; Appert, S.; Arai, K.; Billingsley, G.; Biscans, S; Bork, R.; Brooks, A. F.; Coyne, D. C.; Etzel, T.; Gushwa, K. E.; Gustafson, E. K.; Hall, E. D.; Heptonstall, A. W.; Korth, W. Z.; Maros, E.; Matichard, F.; McIntyre, G.; McIver, J.; Quintero, E. A.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Sanchez, E. J.; Taylor, R.; Torrie, C. I.; Vajente, G.; Wipf, C. C.; Yamamoto, H.; Zhang, L.; Zucker, M. E.; Zweizig, J.
    Quantum fluctuations in the phase and amplitude quadratures of light set limitations on the sensitivity of modern optical instruments. The sensitivity of the interferometric gravitational-wave detectors, such as the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO), is limited by quantum shot noise, quantum radiation pressure noise, and a set of classical noises. We show how the quantum properties of light can be used to distinguish these noises using correlation techniques. Particularly, in the first part of the paper we show estimations of the coating thermal noise and gas phase noise, hidden below the quantum shot noise in the Advanced LIGO sensitivity...

  5. Scheduling Data-Intensive Workflows onto Storage-Constrained Distributed Resources

    Ramakrishnan, Arun; Singh, Gurmeet; Zhao, Henan; Deelman, Ewa; Sakellariou, Rizos; Vahi, Karan; Blackburn, Kent; Meyers, David; Samidi, Michael
    In this paper we examine the issue of optimizing disk usage and of scheduling large-scale scientific workflows onto distributed resources where the workflows are data- intensive, requiring large amounts of data storage, and where the resources have limited storage resources. Our approach is two-fold: we minimize the amount of space a workflow requires during execution by removing data files at runtime when they are no longer required and we schedule the workflows in a way that assures that the amount of data required and generated by the workflow fits onto the individual resources. For a workflow used by gravitational- wave...

  6. Probing Microplasticity in Small-Scale FCC Crystals via Dynamic Mechanical Analysis

    Ni, Xiaoyue; Papanikolaou, Stefanos; Vajente, Gabriele; Adhikari, Rana X.; Greer, Julia R.
    In small-scale metallic systems, collective dislocation activity has been correlated with size effects in strength and with a steplike plastic response under uniaxial compression and tension. Yielding and plastic flow in these samples is often accompanied by the emergence of multiple dislocation avalanches. Dislocations might be active preyield, but their activity typically cannot be discerned because of the inherent instrumental noise in detecting equipment. We apply alternate current load perturbations via dynamic mechanical analysis during quasistatic uniaxial compression experiments on single crystalline Cu nanopillars with diameters of 500 nm and compute dynamic moduli at frequencies 0.1, 0.3, 1, and 10...

  7. First Search for Gravitational Waves from Known Pulsars with Advanced LIGO

    Abbott, B. P.; Abbott, R.; Adhikari, R. X.; Ananyeva, A.; Anderson, S. B.; Appert, S.; Arai, K.; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Berger, B. K.; Billingsley, G.; Biscans, S; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Brunett, S.; Cahillane, C.; Callister, T. A.; Cepeda, C. B.; Couvares, P.; Coyne, D. C.; Drever, R. W. P.; Ehrens, P.; Eichholz, J.; Etzel, T.; Fries, E. M.; Gossan, S. E.; Gushwa, K. E.; Gustafson, E. K.; Hall, E. D.; Heptonstall, A. W.; Isi, M.; Kanner, J. B.; Kondrashov, V.; Korth, W. Z.; Kozak, D. B.; Lazzarini, A.; Maros, E.; Massinger, T. J.; Matichard, F.; McIntyre, G.; McIver, J.; Meshkov, S.; Pedraza, M.; Perreca, A.; Quintero, E. A.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Sachdev, S.; Sanchez, E. J.; Schmidt, P.; Singer, A.; Smith, R. J. E.; Taylor, R.; Torrie, C. I.; Tso, R.; Urban, A. L.; Vajente, G.; Vass, S.; Venugopalan, G.; Wade, A. R.; Wallace, L.; Weinstein, A. J.; Williams, R. D.
    A search is performed for Higgs-boson-mediated flavor-changing neutral currents in the decays of top quarks. The search is based on proton-proton collision data corresponding to an integrated luminosity of 19.7 fb^(−1) at a center-of-mass energy of 8 TeV collected with the CMS detector at the LHC. Events in which a top quark pair is produced with one top quark decaying into a charm or up quark and a Higgs boson (H), and the other top quark decaying into a bottom quark and a W boson are selected. The Higgs boson in these events is assumed to subsequently decay into either...

  8. Path-finding towards a cryogenic interferometer for LIGO

    DeSalvo, Riccardo
    LIGO is exploring cryogenics as a technique of last resort to reduce the thermal noise of mirrors and suspensions in gravitational wave interferometric detectors. Some of the cryogenic, or cryogenic-related, R&D done at LIGO is reported here. Some ideas being considered to make cryogenics possible may be useful even for room temperature detectors.

  9. Effects of waveform model systematics on the interpretation of GW150914

    Abbott, B. P.; Abbott, R.; Adhikari, R. X.; Ananyeva, A.; Anderson, S. B.; Appert, S.; Arai, K.; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Berger, B. K.; Billingsley, G.; Biscans, S; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Brunett, S.; Cahillane, C.; Callister, T. A.; Cepeda, C. B.; Couvares, P.; Coyne, D. C.; Drever, R. W. P.; Ehrens, P.; Eichholz, J.; Etzel, T.; Fries, E. M.; Gossan, S. E.; Gushwa, K. E.; Gustafson, E. K.; Hall, E. D.; Heptonstall, A. W.; Isi, M.; Kanner, J. B.; Kondrashov, V.; Korth, W. Z.; Kozak, D. B.; Lazzarini, A.; Maros, E.; Massinger, T. J.; Matichard, F.; McIntyre, G.; McIver, J.; Meshkov, S.; Pedraza, M.; Perreca, A.; Quintero, E. A.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Sachdev, S.; Sanchez, E. J.; Schmidt, P.; Singer, A.; Smith, R. J. E.; Taylor, R.; Torrie, C. I.; Tso, R.; Urban, A. L.; Vajente, G.; Vass, S.; Venugopalan, G.; Wade, A. R.; Wallace, L.; Weinstein, A. J.; Williams, R. D.; Wipf, C. C.; Yamamoto, H.; Zhang, L.; Zucker, M. E.; Zweizig, J.; Blackman, J.; Chen, Y.; Ma, Y.; Varma, V.; Hemberger, D.; Scheel, M.; Szilagyi, B.
    Parameter estimates of GW150914 were obtained using Bayesian inference, based on three semi-analytic waveform models for binary black hole coalescences. These waveform models differ from each other in their treatment of black hole spins, and all three models make some simplifying assumptions, notably to neglect sub-dominant waveform harmonic modes and orbital eccentricity. Furthermore, while the models are calibrated to agree with waveforms obtained by full numerical solutions of Einstein's equations, any such calibration is accurate only to some non-zero tolerance and is limited by the accuracy of the underlying phenomenology, availability, quality, and parameter-space coverage of numerical simulations. This paper...

  10. First Demonstration of Electrostatic Damping of Parametric Instability at Advanced LIGO

    Blair, Carl; Abbott, Richard; Abbott, B. P.; Adhikari, R. X.; Anderson, S. B.; Ananyeva, A.; Appert, S.; Arai, K.; Billingsley, G.; Biscans, S; Bork, R.; Brooks, A. F.; Coyne, D. C.; Etzel, T.; Gushwa, K. E.; Gustafson, E. K.; Hall, E. D.; Heptonstall, A. W.; Korth, W. Z.; Maros, E.; Matichard, F.; McIntyre, G.; McIver, J.; Quintero, E. A.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Sanchez, E. J.; Taylor, R.; Torrie, C. I.; Vajente, G.; Wipf, C. C.; Yamamoto, H.; Zhang, L.; Zucker, M. E.; Zweizig, J.
    Interferometric gravitational wave detectors operate with high optical power in their arms in order to achieve high shot-noise limited strain sensitivity. A significant limitation to increasing the optical power is the phenomenon of three-mode parametric instabilities, in which the laser field in the arm cavities is scattered into higher-order optical modes by acoustic modes of the cavity mirrors. The optical modes can further drive the acoustic modes via radiation pressure, potentially producing an exponential buildup. One proposed technique to stabilize parametric instability is active damping of acoustic modes. We report here the first demonstration of damping a parametrically unstable mode...

  11. Design of a tuned mass damper for high quality factor suspension modes in Advanced LIGO

    Robertson, N. A.; Fritschel, P.; Shapiro, B.; Torrie, C. I.; Evans, M.
    We discuss the requirements, design, and performance of a tuned mass damper which we have developed to damp the highest frequency pendulum modes of the quadruple suspensions which support the test masses in the two advanced detectors of the Laser Interferometric Gravitational-Wave Observatory. The design has to meet the requirements on mass, size, and level of damping to avoid unduly compromising the suspension thermal noise performance and to allow retrofitting of the dampers to the suspensions with minimal changes to the existing suspensions. We have produced a design satisfying our requirements which can reduce the quality factor of these modes...

  12. Parameter Estimation for Gravitational-wave Bursts with the BayesWave Pipeline

    Bécsy, Bence; Raffai, Peter; Cornish, Neil J.; Essick, Reed; Kanner, Jonah; Katsavounidis, Erik; Littenberg, Tyson B.; Millhouse, Margaret; Vitale, Salvatore
    We provide a comprehensive multi-aspect study of the performance of a pipeline used by the LIGO-Virgo Collaboration for estimating parameters of gravitational-wave bursts. We add simulated signals with four different morphologies (sine-Gaussians (SGs), Gaussians, white-noise bursts, and binary black hole signals) to simulated noise samples representing noise of the two Advanced LIGO detectors during their first observing run. We recover them with the BayesWave (BW) pipeline to study its accuracy in sky localization, waveform reconstruction, and estimation of model-independent waveform parameters. BW localizes sources with a level of accuracy comparable for all four morphologies, with the median separation of actual...

  13. LigoDV-web: Providing easy, secure and universal access to a large distributed scientific data store for the LIGO scientific collaboration

    Areeda, J. S.; Smith, J. R.; Lundgren, A. P.; Maros, E.; Macleod, D. M.; Zweizig, J.
    Gravitational-wave observatories around the world, including the Laser Interferometer Gravitational-Wave Observatory (LIGO), record a large volume of gravitational-wave output data and auxiliary data about the instruments and their environments. These data are stored at the observatory sites and distributed to computing clusters for data analysis. LigoDV-web is a web-based data viewer that provides access to data recorded at the LIGO Hanford, LIGO Livingston and GEO600 observatories, and the 40 m prototype interferometer at Caltech. The challenge addressed by this project is to provide meaningful visualizations of small data sets to anyone in the collaboration in a fast, secure and reliable...

  14. The basic physics of the binary black hole merger GW150914

    Abbott, B. P.; Abbott, R.; Adhikari, R. X.; Anderson, S. B.; Arai, K.; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Billingsley, G.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Brunett, S.; Cahillane, C.; Callister, T.; Cepeda, C. B.; Couvares, P.; Coyne, D. C.; Dergachev, V.; Drever, R. W. P.; Ehrens, P.; Eichholz, J.; Etzel, T.; Gossan, S. E.; Gushwa, K. E.; Gustafson, E. K.; Hall, E. D.; Heptonstall, A. W.; Isi, M.; Kanner, J. B.; Kells, W.; Kondrashov, V.; Korth, W. Z.; Kozak, D. B.; Lazzarini, A.; Lewis, J. B.; Maros, E.; Marx, J. N.; McIntyre, G.; McIver, J.; Meshkov, S.; Pedraza, M.; Perreca, A.; Price , L. R.; Quintero, E. A.; Robertson, N. A.; Rollins, J. G.; Sachdev, S.; Sanchez, E. J.; Schmidt, P.; Singer, A.; Smith, N. D.; Smith, R. J. E.; Taylor, R.; Thirugnanasambandam, M. P.; Torrie, C. I.; Vajente, G.; Vass, S.; Wallace, L.; Weinstein, A. J.; Williams, R. D.; Wipf, C. C.; Yamamoto, H.; Zhang, L.; Zucker, M. E.; Zweizig, J.; Chen, Y.; Engels, W.; Thorne, K. S.
    The first direct gravitational-wave detection was made by the Advanced Laser Interferometer Gravitational Wave Observatory on September 14, 2015. The GW150914 signal was strong enough to be apparent, without using any waveform model, in the filtered detector strain data. Here, features of the signal visible in the data are analyzed using concepts from Newtonian physics and general relativity, accessible to anyone with a general physics background. The simple analysis presented here is consistent with the fully general-relativistic analyses published elsewhere, in showing that the signal was produced by the inspiral and subsequent merger of two black holes. The black holes...

  15. Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO’s First Observing Run

    Abbott, B. P.; Abbott, R.; Adhikari, R. X.; Ananyeva, A.; Anderson, S. B.; Appert, S.; Arai, K.; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Berger, B. K.; Billingsley, G.; Biscans, S; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Brunett, S.; Cahillane, C.; Callister, T. A.; Cepeda, C. B.; Couvares, P.; Coyne, D. C.; Drever, R. W. P.; Ehrens, P.; Eichholz, J.; Etzel, T.; Fries, E. M.; Gossan, S. E.; Gushwa, K. E.; Gustafson, E. K.; Hall, E. D.; Heptonstall, A. W.; Isi, M.; Kanner, J. B.; Kondrashov, V.; Korth, W. Z.; Kozak, D. B.; Lazzarini, A.; Maros, E.; Massinger, T. J.; Matichard, F.; McIntyre, G.; McIver, J.; Meshkov, S.; Pedraza, M.; Perreca, A.; Quintero, E. A.; Reitze, D. H.; Robertson, N. A.; Rocchi, A.; Rollins, J. G.; Sachdev, S.; Sanchez, E. J.; Schmidt, P.; Singer, A.; Smith, R. J. E.; Taylor, R.; Torrie, C. I.; Tso, R.; Urban, A. L.; Vajente, G.; Vass, S.; Venugopalan, G.; Wade, A. R.; Wallace, L.; Weinstein, A. J.; Williams, R. D.; Wipf, C. C.; Yamamoto, H.; Zhang, L.; Zucker, M. E.; Zweizig, J.; Blackman, J.; Chen, Y.; Ma, Y.; Varma, V.
    A wide variety of astrophysical and cosmological sources are expected to contribute to a stochastic gravitational-wave background. Following the observations of GW150914 and GW151226, the rate and mass of coalescing binary black holes appear to be greater than many previous expectations. As a result, the stochastic background from unresolved compact binary coalescences is expected to be particularly loud. We perform a search for the isotropic stochastic gravitational-wave background using data from Advanced Laser Interferometer Gravitational Wave Observatory’s (a LIGO) first observing run. The data display no evidence of a stochastic gravitational-wave signal. We constrain the dimensionless energy density of gravitational...

  16. Validating gravitational-wave detections: The Advanced LIGO hardware injection system

    Biwer, C.; Rollins, J. G.; Kanner, J. B.; Weinstein, A. J.
    Hardware injections are simulated gravitational-wave signals added to the Laser Interferometer Gravitational-wave Observatory (LIGO). The detectors’ test masses are physically displaced by an actuator in order to simulate the effects of a gravitational wave. The simulated signal initiates a control-system response which mimics that of a true gravitational wave. This provides an end-to-end test of LIGO’s ability to observe gravitational waves. The gravitational-wave analyses used to detect and characterize signals are exercised with hardware injections. By looking for discrepancies between the injected and recovered signals, we are able to characterize the performance of analyses and the coupling of instrumental subsystems...

  17. Directional Limits on Persistent Gravitational Waves from Advanced LIGO’s First Observing Run

    Abbott, B. P.; Abbott, R.; Adhikari, R. X.; Ananyeva, A.; Anderson, S. B.; Appert, S.; Arai, K.; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Berger, B. K.; Billingsley, G.; Biscans, S; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Brunett, S.; Cahillane, C.; Callister, T.; Cepeda, C. B.; Couvares, P.; Coyne, D. C.; Drever, R. W. P.; Ehrens, P.; Eichholz, J.; Etzel, T.; Fries, E. M.; Gossan, S. E.; Gushwa, K. E.; Gustafson, E. K.; Hall, E. D.; Heptonstall, A. W.; Isi, M.; Kanner, J. B.; Kondrashov, V.; Korth, W. Z.; Kozak, D. B.; Lazzarini, A.; Maros, E.; Massinger, T. J.; Matichard, F.; McIntyre, G.; McIver, J.; Meshkov, S.; Pedraza, M.; Perreca, A.; Quintero, E. A.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Sachdev, S.; Sanchez, E. J.; Schmidt, P.; Singer, A.; Smith, R. J. E.; Taylor, R.; Torrie, C. I.; Tso, R.; Urban, A. L.; Vajente, G.; Vass, S.; Venugopalan, G.; Wade, A. R.; Wallace, L.; Weinstein, A. J.; Williams, R. D.; Wipf, C. C.; Yamamoto, H.; Zhang, L.; Zucker, M. E.; Zweizig, J.; Blackman, J.; Chen, Y.; Ma, Y.; Varma, V.
    We employ gravitational-wave radiometry to map the stochastic gravitational wave background expected from a variety of contributing mechanisms and test the assumption of isotropy using data from the Advanced Laser Interferometer Gravitational Wave Observatory’s (aLIGO) first observing run. We also search for persistent gravitational waves from point sources with only minimal assumptions over the 20–1726 Hz frequency band. Finding no evidence of gravitational waves from either point sources or a stochastic background, we set limits at 90% confidence. For broadband point sources, we report upper limits on the gravitational wave energy flux per unit frequency in the range F_(α,Θ)(f)<(0.1–56)×10^(-8) erg cm^(-2) s^(-1) Hz^(-1)(f/25  Hz)^(α-1) depending...

  18. LIGO and the opening of a unique observational window on the universe

    Kalogera, Vassiliki; Lazzarini, Albert
    A unique window on the universe opened on September 14, 2015, with direct detection of gravitational waves by the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors. This event culminated a half-century effort around the globe to develop terrestrial detectors of adequate sensitivity to achieve this goal. It also happened appropriately only a few months before the centennial of Einstein’s final paper introducing the general theory of relativity. This detection provided the surprising discovery of a coalescing pair of “heavy” black holes (more massive than ≃ 25 M_๏) leading to the formation of a spinning ≃ 62 solar mass black hole. One...

  19. Cryogenically cooled ultra low vibration silicon mirrors for gravitational wave observatories

    Shapiro, Brett; Adhikari, Rana X.; Aguiar, Odylio; Bonilla, Edgard; Fan, Danyang; Gan, Litawn; Gomez, Ian; Khandelwal, Sanditi; Lantz, Brian; MacDonald, Tim; Madden-Fong, Dakota
    Interferometric gravitational wave observatories recently launched a new field of gravitational wave astronomy with the first detections of gravitational waves in 2015. The number and quality of these detections is limited in part by thermally induced vibrations in the mirrors, which show up as noise in these interferometers. One way to reduce this thermally induced noise is to use low temperature mirrors made of high purity single-crystalline silicon. However, these low temperatures must be achieved without increasing the mechanical vibration of the mirror surface or the vibration of any surface within close proximity to the mirrors. The vibration of either...

  20. All-sky search for short gravitational-wave bursts in the first Advanced LIGO run

    Abbott, B. P.; Abbott, R.; Adhikari, R. X.; Ananyeva, A.; Anderson, S. B.; Appert, S.; Arai, K.; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Berger, B. K.; Billingsley, G.; Biscans, S; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Brunett, S.; Cahillane, C.; Callister, T.; Cepeda, C. B.; Couvares, P.; Coyne, D. C.; Drever, R. W. P.; Ehrens, P.; Eichholz, J.; Etzel, T.; Fries, E. M.; Gossan, S. E.; Gushwa, K. E.; Gustafson, E. K.; Hall, E. D.; Heptonstall, A. W.; Isi, M.; Kanner, J. B.; Kondrashov, V.; Korth, W. Z.; Kozak, D. B.; Lazzarini, A.; Maros, E.; Massinger, T. J.; Matichard, F.; McIntyre, G.; McIver, J.; Meshkov, S.; Pedraza, M.; Perreca, A.; Quintero, E. A.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Sachdev, S.; Sanchez, E. J.; Schmidt, P.; Singer, A.; Smith, R. J. E.; Taylor, R.; Torrie, C. I.; Tso, R.; Urban, A. L.; Vajente, G.; Vass, S.; Venugopalan, G.; Wade, A. R.; Wallace, L.; Weinstein, A. J.; Williams, R. D.; Wipf, C. C.; Yamamoto, H.; Zhang, L.; Zucker, M. E.; Zweizig, J.; Blackman, J.; Chen, Y.; Ma, Y.; Varma, V.
    We present the results from an all-sky search for short-duration gravitational waves in the data of the first run of the Advanced LIGO detectors between September 2015 and January 2016. The search algorithms use minimal assumptions on the signal morphology, so they are sensitive to a wide range of sources emitting gravitational waves. The analyses target transient signals with duration ranging from milliseconds to seconds over the frequency band of 32 to 4096 Hz. The first observed gravitational-wave event, GW150914, has been detected with high confidence in this search; the other known gravitational-wave event, GW151226, falls below the search’s sensitivity....

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.