Recursos de colección

ETD at Indian Institute of Science (2.878 recursos)

Repository of Theses and Dissertations of Indian Institute of Science, Bangalore, India. The repository has been developed to capture, disseminate and preserve research theses of Indian Institute of Science.

Electrical Communication Engineering (ece)

Mostrando recursos 1 - 20 de 139

  1. Wide-Band Radio-Frequency All-Pass Networks for Analog Signal Processing

    Keerthan, P
    There is an ever increasing demand for higher spectral usage in wireless communication, radar and imaging systems. Higher spectral efficiency can be achieved using components that are aware of system environment and adapt suitably to the operating conditions. In this regard, radio frequency (RF) signal analysis is of paramount interest. Emergence of dispersive delay networks (DDN) has led to the significant development of microwave analogue-signal processing (ASP) and analysis. DDN causes displacement of spectral components in time domain, relative to the frequency dependant group delay response. The main challenge in the design of DDN in this context is in achieving...

  2. Wide-Band Radio-Frequency All-Pass Networks for Analog Signal Processing

    Keerthan, P
    There is an ever increasing demand for higher spectral usage in wireless communication, radar and imaging systems. Higher spectral efficiency can be achieved using components that are aware of system environment and adapt suitably to the operating conditions. In this regard, radio frequency (RF) signal analysis is of paramount interest. Emergence of dispersive delay networks (DDN) has led to the significant development of microwave analogue-signal processing (ASP) and analysis. DDN causes displacement of spectral components in time domain, relative to the frequency dependant group delay response. The main challenge in the design of DDN in this context is in achieving...

  3. Functional Index Coding, Network Function Computation, and Sum-Product Algorithm for Decoding Network Codes

    Gupta, Anindya
    Network coding was introduced as a means to increase throughput in communication networks when compared to routing. Network coding can be used not only to communicate messages from some nodes in the network to other nodes but are also useful when some nodes in a network are interested in computing some functions of information generated at some other nodes. Such a situation arises in sensor networks. In this work, we study three problems in network coding. First, we consider the functional source coding with side information problem wherein there is one source that generates a set of messages and one...

  4. Functional Index Coding, Network Function Computation, and Sum-Product Algorithm for Decoding Network Codes

    Gupta, Anindya
    Network coding was introduced as a means to increase throughput in communication networks when compared to routing. Network coding can be used not only to communicate messages from some nodes in the network to other nodes but are also useful when some nodes in a network are interested in computing some functions of information generated at some other nodes. Such a situation arises in sensor networks. In this work, we study three problems in network coding. First, we consider the functional source coding with side information problem wherein there is one source that generates a set of messages and one...

  5. Fast Solvers for Integtral-Equation based Electromagnetic Simulations

    Das, Arkaprovo
    With the rapid increase in available compute power and memory, and bolstered by the advent of efficient formulations and algorithms, the role of 3D full-wave computational methods for accurate modelling of complex electromagnetic (EM) structures has gained in significance. The range of problems includes Radar Cross Section (RCS) computation, analysis and design of antennas and passive microwave circuits, bio-medical non-invasive detection and therapeutics, energy harvesting etc. Further, with the rapid advances in technology trends like System-in-Package (SiP) and System-on-Chip (SoC), the fidelity of chip-to-chip communication and package-board electrical performance parameters like signal integrity (SI), power integrity (PI), electromagnetic interference (EMI)...

  6. Fast Solvers for Integtral-Equation based Electromagnetic Simulations

    Das, Arkaprovo
    With the rapid increase in available compute power and memory, and bolstered by the advent of efficient formulations and algorithms, the role of 3D full-wave computational methods for accurate modelling of complex electromagnetic (EM) structures has gained in significance. The range of problems includes Radar Cross Section (RCS) computation, analysis and design of antennas and passive microwave circuits, bio-medical non-invasive detection and therapeutics, energy harvesting etc. Further, with the rapid advances in technology trends like System-in-Package (SiP) and System-on-Chip (SoC), the fidelity of chip-to-chip communication and package-board electrical performance parameters like signal integrity (SI), power integrity (PI), electromagnetic interference (EMI)...

  7. Role of Nonlocality and Counterfactuality in Quantum Cryptography

    Akshatha Shenoy, H
    Quantum cryptography is arguably the most successfully applied area of quantum information theory. In this work, We invsetigate the role of quantum indistinguishability in random number generation, quantum temporal correlations, quantum nonlocality and counterfactuality for quantum cryptography. We study quantum protocols for key distribution, and their security in the conventional setting, in the counterfactual paradigm, and finally also in the device-independent scenario as applied to prepare-and-measure schemes. We begin with the interplay of two essential non-classical features like quantum indeterminism and quantum indistinguishability via a process known as bosonic stimulation is discussed. It is observed that the process provides an efficient method for...

  8. Dynamics, Fluctuations and Rheological Applications of Magnetic Nanopropellers

    Ghosh, Arijit
    Micron scale robots going inside our body and curing various ailments is a technolog¬ical dream that easily captures our imagination. However, with the advent of novel nanofabrication and nanocharacterization tools there has been a surge in the research in this field over the last decade. In order to achieve locomotion (swim) at these small length scales, special strategies need to be adopted, that is able to overcome the large viscous damping that these microbots have to face while moving in the various bod¬ily fluids. Thus researchers have looked into the swimming strategies found in nature like that of bacteria like...

  9. Conformal Active Sheets

    Jha, Prateek
    Stretchable Electronics is an emerging class of electronics that allow electronics to be bent, conform, ex and stretch while still retaining its full functionality. Other than bending, existing and conforming, adding stretchability to electronic systems can open up a new frontier for a myriad of applications. Especially in the medical sector, these stretchable devices can increase the scope of monitoring and ease and comfort of the patient. All kinds of wearable devices can be based on these technologies to augment our daily lives. With the kind of state of art technology available to the common man today, the bar has...

  10. Conformal Active Sheets

    Jha, Prateek
    Stretchable Electronics is an emerging class of electronics that allow electronics to be bent, conform, ex and stretch while still retaining its full functionality. Other than bending, existing and conforming, adding stretchability to electronic systems can open up a new frontier for a myriad of applications. Especially in the medical sector, these stretchable devices can increase the scope of monitoring and ease and comfort of the patient. All kinds of wearable devices can be based on these technologies to augment our daily lives. With the kind of state of art technology available to the common man today, the bar has...

  11. Integrated Interfaces for Sensing Applications

    Javed, Gaggatur Syed
    Sensor interfaces are needed to communicate the measured real-world analog values to the base¬band digital processor. They are dominated by the presence of high accuracy, high resolution analog to digital converters (ADC) in the backend. On most occasions, sensing is limited to small range measurements and low-modulation sensors where the complete dynamic range of ADC is not utilized. Designing a subsystem that integrates the sensor and the interface circuit and that works with a low resolution ADC requiring a small die-area is a challenge. In this work, we present a CMOS based area efficient, integrated sensor interface for applications like...

  12. Network Coding for Wirless Relaying and Wireline Networks

    Vijayvaradharaj, T M
    Network coding has emerged as an attractive alternative to routing because of the through put improvement it provides by reducing the number of channel uses. In a wireless scenario, in addition, further improvement can be obtained through Physical layer Network Coding (PNC), a technique in which nodes are allowed to transmit simultaneously, instead of transmitting in orthogonal slots. In this thesis, the design and analysis of network coding schemes are considered, for wireless two-way relaying, multi-user Multiple Access Relay Channel (MARC) and wireline networks. In a wireless two-way relay channel with PNC, the simultaneous transmissions of user nodes result in...

  13. Network Coding for Wirless Relaying and Wireline Networks

    Vijayvaradharaj, T M
    Network coding has emerged as an attractive alternative to routing because of the through put improvement it provides by reducing the number of channel uses. In a wireless scenario, in addition, further improvement can be obtained through Physical layer Network Coding (PNC), a technique in which nodes are allowed to transmit simultaneously, instead of transmitting in orthogonal slots. In this thesis, the design and analysis of network coding schemes are considered, for wireless two-way relaying, multi-user Multiple Access Relay Channel (MARC) and wireline networks. In a wireless two-way relay channel with PNC, the simultaneous transmissions of user nodes result in...

  14. Timbre Perception of Time-Varying Signals

    Arthi, S
    Every auditory event provides an information-rich signal to the brain. The signal constitutes perceptual attributes of pitch, loudness, timbre, and also, conceptual attributes like location, emotions, meaning, etc. In the present work we examine the timbre perception of time-varying signals in particular. While stationary signal timbre, by-itself is complex perceptually, the time-varying signal timbre introduces an evolving pattern, adding to its multi-dimensionality. To characterize timbre, we conduct psycho-acoustic perception tests with normal-hearing human subjects. We focus on time-varying synthetic speech signals(can be extended to music) because listeners are perceptually consistent with speech. Also, we can parametrically control the timbre and pitch...

  15. Packet Scheduling on the Wireless Channel

    Mondal, Santanu
    Scheduling has always been an indispensable part of resource allocation in wireless networks. Accurate information about channel-state is assumed as a modeling simplification. However, in a real-life network ,e.g., Long Term Evolution(LTE) or IEEE 802.16e WiMAX, the channel-state information feedback to the transmitter can have uncertainty. The primary reason being that although resource allocation is done at the finer granularity of a Physical Resource Block (PRB), channel-state information is still feedback at the coarser granularity of a sub band, which is a group of PRBs. This is done to reduce the feedback traffic from the users to the Base Station....

  16. Photonic Crystal Ring Resonators for Optical Networking and Sensing Applications

    Tupakula, Sreenivasulu
    Photonic bandgap structures have provided promising platform for miniaturization of modern integrated optical devices. In this thesis, a photonic crystal based ring resonator (PCRR) is proposed and optimized to exhibit high quality factor. Also, force sensing application of the optimized PC ring resonator and Dense Wavelength Division Multiplexing (DWDM) application of the PCRR are discussed. Finally fabrication and characterization of the PCRR is presented. A photonic crystal ring resonator is designed in a hexagonal lattice of air holes on a silicon slab. A novel approach is used to optimize PCRR to achieve high quality factor. The numerical analysis of the optimized...

  17. Photonic Crystal Ring Resonators for Optical Networking and Sensing Applications

    Tupakula, Sreenivasulu
    Photonic bandgap structures have provided promising platform for miniaturization of modern integrated optical devices. In this thesis, a photonic crystal based ring resonator (PCRR) is proposed and optimized to exhibit high quality factor. Also, force sensing application of the optimized PC ring resonator and Dense Wavelength Division Multiplexing (DWDM) application of the PCRR are discussed. Finally fabrication and characterization of the PCRR is presented. A photonic crystal ring resonator is designed in a hexagonal lattice of air holes on a silicon slab. A novel approach is used to optimize PCRR to achieve high quality factor. The numerical analysis of the optimized...

  18. Generation of Modulated Microwave Signals using Optical Techniques for Onboard Spacecraft Applications

    Yogesh Prasad, K R
    This thesis deals with optical synthesis of unmodulated and modulated microwave signals. Generation of microwave signals based on optical heterodyning is discussed in detail. The effect of phase noise of laser on heterodyned output has been studied for different phase noise profiles. Towards this, we propose a generic algorithm to numerically model the linewidth broadening of a laser due to phase noise. Generation of microwave signals is demonstrated practically by conducting an optical heterodyning experiment. Signals ranging in frequency from 12.5 MHz to 27 GHz have been generated. Limitations of optical heterodyning based approach in terms of phase noise performance...

  19. Generation of Modulated Microwave Signals using Optical Techniques for Onboard Spacecraft Applications

    Yogesh Prasad, K R
    This thesis deals with optical synthesis of unmodulated and modulated microwave signals. Generation of microwave signals based on optical heterodyning is discussed in detail. The effect of phase noise of laser on heterodyned output has been studied for different phase noise profiles. Towards this, we propose a generic algorithm to numerically model the linewidth broadening of a laser due to phase noise. Generation of microwave signals is demonstrated practically by conducting an optical heterodyning experiment. Signals ranging in frequency from 12.5 MHz to 27 GHz have been generated. Limitations of optical heterodyning based approach in terms of phase noise performance...

  20. Time-based All-Digital Technique for Analog Built-in Self Test

    Vasudevamurthy, Rajath
    A scheme for Built-in-Self-Test (BIST) of analog signals with minimal area overhead, for measuring on-chip voltages in an all-digital manner is presented in this thesis. With technology scaling, the inverter switching times are becoming shorter thus leading to better resolution of edges in time. This time resolution is observed to be superior to voltage resolution in the face of reducing supply voltage and increasing variations as physical dimensions shrink. In this thesis, a new method of observability of analog signals is proposed, which is digital-friendly and scalable to future deep sub-micron (DSM) processes. The low-bandwidth analog test voltage is captured...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.