Recursos de colección

ETD at Indian Institute of Science (3.494 recursos)

Repository of Theses and Dissertations of Indian Institute of Science, Bangalore, India. The repository has been developed to capture, disseminate and preserve research theses of Indian Institute of Science.

Physics (physics)

Mostrando recursos 1 - 20 de 186

  1. Studies of Ultracold Bosons in Optical Lattices using Strong-Coupling Expansions

    Gupta, Manjari
    Cold bosonic atoms trapped in optical lattices formed by standing wave interference patterns of multiple laser beams constitute excellent emulators of models of strongly correlated quantum systems of bosons. In this thesis, we develop and deploy strong-coupling expansion (i.e., an expansion in terms of the ratio of the inter-site hopping amplitude of the bosons to the strength of their interactions) techniques for studying the properties of three different instances of such systems. In the first instance, we have used strong coupling expansion techniques to calculate the density pro le for bosonic atoms trapped in an optical lattice with an overall...

  2. Driven Granular and Soft-matter : Fluctuation Relations, Flocking and Oscillatory Sedimentation

    Nitin Kumar, *
    Active matter refers to systems driven out of thermal equilibrium by the uptake and dissipation of energy directly at the level of the individual constituents, which then undergo systematic movement in a direction decided by their own internal state. This category of nonequilibrium systems was defined as the physical model of motile, metabolizing matter, but the definition has a wider application. In this thesis we work with monolayer of macro-scopic granular particles lying on a vibrated surface and show that it provides a faithful realisation of active matter. The vibration feeds energy into the tilting vertical motion of the particles,...

  3. Growth and Studies of Phase Transitions in Multifunctional Perovskite Materials

    Yadav, Ruchika
    Crystal growth and characterization of few multifunctional materials with perovskite (ABX3) structure are discussed in this thesis. Efforts were made to modify the magnetic and electric behaviour of these materials by selective tuning of A, B and X components. Structural, magnetic and dielectric characterization are detailed in various chapters for doped (A and B site) rare-earth manganites and organometallic compounds with different (Chloride or formate) anions. The relevant aspects of crystal structure and its relationship with ordered ground states are discussed in the introductory chapter. A detailed review of prominent theories pertaining to magnetic and ferroelectric ordering in the literature...

  4. Study of Evolved Stellar Populations in the Magellanic Clouds

    Choudhury, Samyaday
    The Magellanic Clouds (MCs) consist of a pair of galaxies, the Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC), which are located at a distance of 50 kpc and 60 kpc, with stellar masses of 1010 M and 109 M , respectively. Morphologically they are categorized as irregular type galaxies. The MCs are gas rich and metal poor (Z=0.008 for LMC, and 0.004 for SMC) as compared to the Milky Way (MW), and have active star-forming regions. Their proximity and location at high galactic latitude enable us to resolve their individual populations as well as detect faint stellar...

  5. Structural Studies on Thymidylate Kinase : Evolution, Specificity and Catalysis

    Biswas, Ansuman
    Thymidylate kinase (TMK) is a key enzyme for DNA synthesis. It occurs at the junction of the de novo and salvage pathways for the synthesis of deoxythymidine triphosphate (dTTP). Its inhibition affects cell viability, thereby making it an important target for the development of anticancer, antibacterial and antiparasitic drugs. This thesis describes the analyses of the sequence, structure and dynamics of thymidylate kinase to obtain insights into its function. Two thermophilic variants of the enzyme were chosen for our studies. The studies provide valuable insights about the active site residues and the mechanism of catalysis, which have implications in protein...

  6. Optical Diffraction Tomography for the Refractive Index Profiling of Objects with Large Space-Bandwidth product

    John, Jem Teresa
    The primary goal of this work is to arrive at direction tomography (DT) algorithms freed from the severe linearization in the formulation, and as-assumptions on variation of the refractive index distribution (RID), involved in the earlier approaches based on Born and Royton approximations and the Fourier di reaction theorem (FDT). To start with, a direct single-step re-covery of RID from intensity measurements is demonstrated, replacing the common two-step procedure involving, rest the recovery of phase from in-density followed by the inversion of scattered led for the RID. The information loss, unavoidable in a two-step procedure is thus successfully addressed. Secondly,...

  7. Topology and Quantum Phases of Low Dimensional Fermionic Systems

    Ray, Sayonee
    In this thesis, we study quantum phase transitions and topological phases in low dimensional fermionic systems. In the first part, we study quantum phase transitions and the nature of currents in one-dimensional systems, using eld theoretic techniques like bosonization and renormalization group. This involves the study of currents in Luttinger liquids, and the fate of a persistent current in a 1D system. In the second part of the thesis, we study the different types of Majorana edge modes in a 1D p-wave topological superconductor. Further we extend our analysis to the e ect of an additional s-wave pairing and a...

  8. Polymer Assisted Dispersion of Carbon Nanotubes (CNTs) and Structure, Electronic Properties of CNT - Polymer Composite

    Pramanik, Debabrata
    Carbon nanotubes possess various unique and interesting properties. They have very high thermal and electrical conductivities, high stiffness, mechanical strength, and optical properties. Due to these properties, CNTs are widely used materials in a variety of fields. It is used for biotechnological and biomedical applications, as chemical and biosensor, in energy storage and field emission transistor. Experimentally synthesized CNTs are generally found in bundle form due to the strong vander Waals (vdW) at-traction between the individual tubes. To use CNTs in real life applications, we often require specific nanotubes with particular characteristics. The nanotube bundle is a mixture of various...

  9. Laser Beam Induced Conductance Modulations as a Potential Microprobe in the Investigation of Defects and Inhomogeneities in Bulk Si and PbS, HgCdTe Quantum Dot Heterostructures

    Abhale, Atul Prakash
    In this thesis, the strength of the LBIC system is enhanced in different aspects that includes its feasibility as a non-destructive characterization tool, the signal analysis and development of analytical solution to have better understanding on the defects and inhomogeneities in the quantum dot based hetero-structures for device applications, finally understanding its limits due to the size of the laser beam and interpretation of artefacts in the signal appearance due to the presence of co-devices. Chapter#1 provides the introduction and literature survey of the LBIC system. It covers the importance and area of application of the LBIC. Chapter#2 various tools...

  10. Understanding DNA-Based Nanostructures using Molecular Simulation

    Joshi, Himanshu
    Deoxyribonucleic acid (DNA) is arguably the most studied and most important biological molecule. Recently, it has also been established as a potential candidate for nanoconstruction. Self-assembly of DNA molecules has emerged as a simple yet elegant technique to organize matter with sub-nanometer precision. The unique base-pairing properties which helps DNA to carry genetic information, also makes it a suitable building block for creating stable and robust nanostructures. Recent decades have witnessed a major revolution in the synthesis of different topological structures made of DNA molecules at nanoscale like, two dimensional arrays, nanotubes, polyhedra, smiley faces, three dimensional crystals etc. Due...

  11. Electric, Magnetic and Magnetocaloric Studies of Magnetoelectric GdMnO3 and Gd0.5Sr0.5MnO3 Single Crystals

    Wagh, Aditya A
    After the prediction of magnetoelectric effect in Cr2O3, in early 1960's, D. Asrov became the first to experimentally verify this phenomenon. After the pioneering work on magnetoelectric materials in 1960's and 1970's, the discovery of large magnetoelectric effect in orthorhombic rare-earth manganite TbMnO3 has revived great interest in magnetoelectric materials, especially during the last decade. Magnetoelectric multiferroics have great potential in applications such as novel memory storage devices and sensors. As a result of extensive theoretical and experimental investigations conducted on rare-earth magnetoelectric manganites, TbMnO3 has become a prototype magnetoelectric multiferroic material. Orthorhombic rare-earth manganites RMnO3 (R = Gd, Tb...

  12. Nanodevices of Graphene, Carbon Nanotubes and Flow Behaviour of Graphene Oxide Gel

    Vasu, Kalangi Siddeswara
    In the last three decades carbon nanomaterials such as fullerenes, carbon nanotubes and graphene have attracted significant attention from the scientific community due to their unique electronic, optical, thermal, mechanical and chemical properties. Among them carbon nanotubes and graphene have been used in numerous applications for future nanoelectronics, biochemical sensors and energy harvesting technologies due to their unique properties including exceptionally high electronic conductivity and mechanical strength. Carbon nanotubes are cylindrical structures and considered to be large mesoscopic molecules with high aspect ratios. Graphene is a single atomic layer of crystalline graphite and prepared by stripping layers off the graphite...

  13. Precision Measurements of the Radio Background at Long Wavelengths

    Patra, Nipanjana
    The study of continuum sky background spectrum at low radio frequencies has achieved specific importance in present day observational cosmology . At these low frequencies the sky continuum is contributed by the extragalactic radio sources together with the synchrotron emission of the Milky Way as well as CMB. Following the recombination, the energy exchange between the primordial neutral hydrogen and CMB photons, during its propagation through the ”Dark ages” as well as the ”cosmic dawn” resulted in absorption and emission features in CMB spectrum which evolved with the evolution of the HI over cosmic time. Due to cosmological expansion of...

  14. Magnetic Ordering in Bulk and Nanoparticles of Certain Bismuth Based Manganites Bi1-xAxMnO3 (A = Ca, Sr) : Electron Paramagnetic Resonance and Magnetization Studies

    Geetanjali, *
    The study of bulk and nanoparticles of perovskite rare earth manganites has been an extensive area of research in the recent past due to their rich and interesting physics and potential applications [1-5]. Manganites have potential applications in the emerging field of spintronics because of their colossal magnetoresistance (CMR) [6] and half-metallic [7] properties. Nano sized materials exhibit enhanced and different electronic and magnetic properties and expected to behave quite differently compared to their bulk counterparts due to quantum confinement effects and high surface/volume ratio. Magnetic nanoparticles in particular have great potential for use in a wide range of applications...

  15. Structure and Dynamics of Binary Mixtures of Soft Nanocolloids and Polymers

    Chandran, Sivasurender
    Binary mixtures of polymers and soft nanocolloids, also called as polymer nanocomposites are well known and studied for their enormous potentials on various technological fronts. In this thesis blends of polystyrene grafted gold nanoparticles (PGNPs) and polystyrene (PS) are studied experimentally, both in bulk and in thin films. This thesis comprises three parts; 1) evolution of microscopic dynamics in the bulk(chapter-3),2) dispersion behavior of PGNPs in thin and ultra thin polymer matrices (chapter-4) 3) effect of dispersion on the glass transition behavior (chapter-5). In first part, the state of art technique, x-ray photon correlation spectroscopy is used to study the temperature...

  16. Tomographic Studies of Pulsar Radio Emission Cones and Searches for Radio Counterparts of Gamma-Ray Pulsars

    Maan, Yogesh
    Radio emission from pulsars is believed to originate from charged particles streaming along the open magnetic field lines, radiating within a narrow cone at each of the two magnetic poles. In each rotation of the star, the emission beam sweeping across the observer’s line of sight, is seen as a pulse of radio emission. Average pulse profiles integrated over several hundreds of individual pulses, along with polarization information, reveal the viewing geometry and various emission properties(e.g., emission in multiple cones, frequency dependence of the emission altitude, notches in the average profiles, etc.), and provide some clues about the possible emission...

  17. Spiral-Wave Dynamics in Ionically Realistic Mathematical Models for Human Ventricular Tissue

    Nayak, Alok Ranjan
    There is a growing consensus that life-threatening cardiac arrhythmias like ven- tricular tachycardia (VT) or ventricular fibrillation (VF) arise because of the formation of spiral waves of electrical activation in cardiac tissue; unbroken spiral waves are associated with VT and broken ones with VF. Several experimental studies have shown that in homogeneities in cardiac tissue can have dramatic effects on such spiral waves. In this thesis we focus on spiral-wave dynamics in mathematical models of human ventricular tissue which contain (a) conduction in homogeneities, (b) ionic in- homogeneities, (c) fibroblasts, (d) Purkinje fibers. We also study the effect of a periodic...

  18. Evolution of the Magnetic Ground States with Lattice Distortion and Chemical Inhomogeneity in Doped Perovskite Oxides

    Manna, Kaustuv
    The physics of doped transition metal perovskite has been an area of intense research in the last few decades due to their interesting magnetic and transport properties. Various exciting phenomena such as, colossal magneto resistance, high Tc superconductivity, multiferroicity, ferroelectricity, high temperature ferromagnetism, etc., have made these systems more fascinating in terms of fundamental study as well as technological applications. There are several intrinsic material characteristics in these perovskite oxides that can impact their magnetic properties. Lattice distortion and chemical in homogeneity are two important ones. Changes in valence and ionic radius in rare earth (A- site) and transition metal...

  19. Structure and Dynamics of Interfacial Molecular Membranes

    Bhattacharya, Rupak
    This thesis describes the study on structure and dynamics of various kinds of molecular membranes in general. We have studied the morphological transition of colloidal as well as biologically relevant membranes and qualitatively argued regarding the interplay between structure and dynamics. Systematic measurements have been performed to address the issue of ambiguous behavior of molecules under stress when its confined at the interface. The structural and dynamical effect on interfacial membranes have been studied for soft colloidal free standing langmuir monolayer as well as for the quasi two dimensional lipid membranes on solid supports. For organic nanoparticle monolayer we have...

  20. Preparation and Optical Properties of Hybrid Assemblies of Metallic Gold Nanoparticles and Semi-Conducting CdSe Quantum Dots

    Tripathi, Laxmi Narayan
    This thesis summarizes the methods of preparation and optical properties of hybrid assemblies of Au NPs and cadmium selenide (CdSe) QDs. First chap-ter deals with the literature survey and theoretical aspects of plasmonics and discussions on optical excitations of metal (plasmons) and semiconducting QDs (excitons). Variation of energy levels of CdSe QDs and its optical properties i e. absorption and emission properties under strong confinement regime have been discussed with respect to effective mass approximation (EMA) model. This is followed by the discussion on optical properties of Au NPs and rods, describing absorption properties, based on Mie theory. Size and...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.