Recursos de colección

ETD at Indian Institute of Science (2.987 recursos)

Repository of Theses and Dissertations of Indian Institute of Science, Bangalore, India. The repository has been developed to capture, disseminate and preserve research theses of Indian Institute of Science.

Biochemistry (biochem)

Mostrando recursos 1 - 20 de 80

  1. Uncovering the Role of Mitochondrial Co-chaperones and Artificial Antioxidants in Cellular Redox Homeostasis

    Srivastava, Shubhi
    The role of mitochondria is multidimensional and ranges in vast areas, including apoptosis, cellular response towards stress, metabolism, which is regulated by a plethora of proteins, acting together to maintain cellular and organellar homeostasis. In spite of the presence of mitochondrial DNA, most of the mitochondrial proteins are nuclear encoded and translocated inside the organelle through dedicated translocases present on outer and inner membrane of mitochondria. To fulfil the cellular energy demand, mitochondria efficiently generate ATP by oxidative phosphorylation, and thus are considered as "power house of cell." There occurs a transfer of electrons from various oxidizable substrates to oxygen,...

  2. Development of an Immunodiagnostic Kit for Species Identification of Snake Bite and Studies on the Cross-Reacting Venom Antigens

    De, Anindya Kanti

  3. Cytosolic Lysophosphatidic Acid Acyltransferase : Implications in Lipid Biosynthesis in Yeast, Plants and Human

    Ghosh, Ananda Kumar
    Cytosolic LPA acyltransferase in yeast An isooctane tolerant strain of S. cerevisiae KK-12 was reported to have increased saturated fatty acid content (Miura et. al., 2000). Amongst the various genes upregulated on isooctane treatment, ICT1 (Increased Copper Tolerance 1) was found to have maximal expression (Miura et. al., 2000; Matsui et. al., 2006). This gene in S. cerevisiae is encoded by YLR099C annotated as Ict1p. However, the physiological significance of Ict1p was not understood. Here we showed that an increase in the synthesis of phosphatidic acid (PA) is responsible for enhanced phospholipid synthesis, which confers organic solvent tolerance to S. cerevisiae. This increase in the PA...

  4. Understanding in vivo Significance of Allosteric Regulation in mtHsp70s : Revealing its Implications in Parkinson's Disease Progression

    Samaddar, Madhuja
    Mitochondria are essential eukaryotic organelles, acting as the sites for numerous crucial metabolic and signalling pathways. The biogenesis of mitochondria requires efficient targeting of several hundreds of proteins from the cytosol, to their varied functional locations within the organelle. The translocation of localized proteins across the inner membrane, and their subsequent folding is achieved by the ATP-dependent function of mitochondrial Hsp70 (mtHsp70). It is a bonafide member of the Hsp70 chaperone family, which are involved in a multitude of functions, together aimed at protein quality control and maintenance of cellular homeostasis. These varied functions of Hsp70 proteins require binding to...

  5. Molecular Characterization of Groundnut Bud Necrosis Virus Encoded Non Structural Protein m (NSm)

    Singh, Pratibha
    Chapter 3 Groundnut Bud Necrosis Virus (GBNV) is a tripartite ambisense RNA plant virus that belongs to serogroup IV of Tospovirus genus. Non-Structural protein-m (NSm), which functions as movement protein in tospoviruses, is encoded by the M RNA. In this chapter, we demonstrate that despite the absence of any putative transmembrane domain, GBNV NSm associates with membranes when expressed in E. coli as well as in N. benthamiana. Incubation of refolded NSm with liposomes ranging in size from 200-250 nm resulted in changes in the secondary and tertiary structure of NSm. A similar behaviour was observed in the presence of...

  6. Role of Mammalian RAD51 Paralogs in Genome Maintenance and Tumor Suppression

    Somyajit, Kumar
    My research was focused on understanding the importance of mammalian RAD51 paralogs in genome maintenance and suppression of tumorigenesis. The investigation carried out during this study has been addressed toward gaining more insights into the involvement of RAD51 paralogs in DNA damage signalling, repair of various types of lesions including double stranded breaks (DSBs), daughter strand gaps (DSGs), interstrand crosslinks (ICLs), and in the protection of stalled replication forks. My study highlights the molecular functions of RAD51 paralogs in Fanconi anemia (FA) pathway of ICL repair, in the ATM and ATR mediated DNA damage responses, in homologous recombination (HR), and...

  7. Unfolded Protein Response in Malaria Parasite

    Chaubey, Shwetha
    Plasmodium falciparum is responsible for the most virulent form of human malaria. The biology of the intra-erythrocytic stage of P. falciparum is the most well studied as it is this stage that marks the clinical manifestation of malaria. To establish a successful infection, P. falciparum brings about extensive remodeling of erythrocytes, its host compartment. The infected erythrocytes harbor several parasite induced membranous structures. Most importantly, pathogenesis related structures termed knobs, which impart cytoadherence, appear on the cell surface of the infected erythrocytes. For bringing about such eccentric renovations in its host compartment, the parasite exports 8% of its genome (~400...

  8. Characterisation of Monoclonal Antibodies and Small Molecule Inhibitors as Hepatitis C Virus Entry Inhibitors

    Bose, Mihika
    Hepatitis C virus (HCV) represents a global health threat. HCV is a blood-borne positive-strand RNA virus belonging to the Flaviviridae family that infects ~160 million people worldwide. About 70% of infected individuals fail to clear the virus and subsequently develop chronic hepatitis, frequently leading to liver cirrhosis and in some cases hepatocellular carcinoma. Therapeutic options for HCV infection are still limited and a protective vaccine is not yet available. Currently available therapies include administration of pegylated alpha interferon in combination with ribavirin. The recently approved protease inhibitors Boceprevir and Telaprevir are also included in the treatment regimen. However, limitations to...

  9. Characterisation of Monoclonal Antibodies and Small Molecule Inhibitors as Hepatitis C Virus Entry Inhibitors

    Bose, Mihika
    Hepatitis C virus (HCV) represents a global health threat. HCV is a blood-borne positive-strand RNA virus belonging to the Flaviviridae family that infects ~160 million people worldwide. About 70% of infected individuals fail to clear the virus and subsequently develop chronic hepatitis, frequently leading to liver cirrhosis and in some cases hepatocellular carcinoma. Therapeutic options for HCV infection are still limited and a protective vaccine is not yet available. Currently available therapies include administration of pegylated alpha interferon in combination with ribavirin. The recently approved protease inhibitors Boceprevir and Telaprevir are also included in the treatment regimen. However, limitations to...

  10. The Elucidation of the Mechanism of Meiotic Chromosome Synapsis in Saccharomyces Cerevisiae : Insights into the Function of Synaptonemal Complex, Hop1 and Red1, Proteins and the Significance of DNA Quadruplex Structures

    Kshirsagar, Rucha
    Meiosis is a specialized type of cell division where two rounds of chromosome segregation follow a single round of DNA duplication resulting in the formation of four haploid daughter cells. Once the DNA replication is complete, the homologous chromosomes pair and recombine during the meiotic prophase I, giving rise to genetic diversity in the gametes. The process of homology search during meiosis is broadly divided into recombination-dependent (involves the formation of double-strand breaks) and recombination-independent mechanisms. In most eukaryotic organisms, pairing of homologs, recombination and chromosome segregation occurs in the context of a meiosis-specific proteinaceous structure, known as the synaptonemal...

  11. Elucidating the Roles of Lon Protease and its Substrate, MarA, in Response to salicylate and other Compounds in Escherichia coli

    Bhaskarla, Chetana
    Cytosolic protein degradation is crucial for cellular homeostasis as it orchestrates protein turnover by destruction of misfolded, unstable and abnormal proteins. This process has two main stages: (i) an ATP-dependent stage mediated by unfoldases and proteases, and (ii) an ATP-independent stage mediated by various peptidases. The ATP dependent proteases recognise target proteins and cleave them into smaller peptides. These enzymes comprise the ATPase-family-associated-with-various-cellular-activities domain that is important for unfolding target proteins. Subsequently, unfolded proteins enter a barrel-shaped proteolytic chamber, an architecture conserved throughout prokaryotes, archea and eukaryotes, where the peptide bond is hydrolysed in an ATP-independent manner. The smaller peptides...

  12. Elucidating the Roles of Lon Protease and its Substrate, MarA, in Response to salicylate and other Compounds in Escherichia coli

    Bhaskarla, Chetana
    Cytosolic protein degradation is crucial for cellular homeostasis as it orchestrates protein turnover by destruction of misfolded, unstable and abnormal proteins. This process has two main stages: (i) an ATP-dependent stage mediated by unfoldases and proteases, and (ii) an ATP-independent stage mediated by various peptidases. The ATP dependent proteases recognise target proteins and cleave them into smaller peptides. These enzymes comprise the ATPase-family-associated-with-various-cellular-activities domain that is important for unfolding target proteins. Subsequently, unfolded proteins enter a barrel-shaped proteolytic chamber, an architecture conserved throughout prokaryotes, archea and eukaryotes, where the peptide bond is hydrolysed in an ATP-independent manner. The smaller peptides...

  13. Host Gene Expression Profiling of Japanese Encephalitis Virus Infected cells : Identification of Novel Pro- and Anti-viral Genes

    Bhandari, Prakash
    Japanese encephalitis virus (JEV), a mosquito-borne flavivirus is the causative agent of Japanese encephalitis (JE). The disease affects mostly children and around 30000– 50000 cases of JE and up to 15000 deaths are reported annually. No anti-viral drugs have been discovered against JE so far, but advances in our knowledge of the molecular biology of flaviviruses is propelling flaviviral drug research at an expeditious pace. Since JEV has a small genome which encodes for only ten proteins, there is dearth of potential drug targets. Researchers are now focusing on cellular interactomes, a complex and dynamic molecular biosystem which identifies host...

  14. Host Gene Expression Profiling of Japanese Encephalitis Virus Infected cells : Identification of Novel Pro- and Anti-viral Genes

    Bhandari, Prakash
    Japanese encephalitis virus (JEV), a mosquito-borne flavivirus is the causative agent of Japanese encephalitis (JE). The disease affects mostly children and around 30000– 50000 cases of JE and up to 15000 deaths are reported annually. No anti-viral drugs have been discovered against JE so far, but advances in our knowledge of the molecular biology of flaviviruses is propelling flaviviral drug research at an expeditious pace. Since JEV has a small genome which encodes for only ten proteins, there is dearth of potential drug targets. Researchers are now focusing on cellular interactomes, a complex and dynamic molecular biosystem which identifies host...

  15. Mechanism of Abrin-Induced Apoptosis and Insights into the Neutralizing Activity of mAb D6F10

    Mishra, Ritu
    Abrin is a potent toxin obtained from the seeds of Abrus precatorius. It is a heterodimeric glycoprotein consisting of an A and a B subunit linked together by a disulfide bond. The toxicity of the protein comes from the A subunit harboring RNA-N-glycosidase activity which cleaves the glycosidic bond between the ribose sugar and the adenine at position 4324 in 28S rRNA. The depurination of a specific adenine residue at position 4324 results in loss of conformation of the 28S rRNA at the α sarcin/ricin loop to which elongation factor-2 (EF-2) binds, during the transloction step of translation, leading to...

  16. Evaluation of Alternate DNA Structures at c-MYC Fragile Region Associated with t(8;14) Translocation And Role of GNG Motifs During G-quadruplex Formation

    Das, Kohal
    Watson-Crick paired B-form DNA is the genetic material in most of the biological systems. Integrity of DNA is of utmost importance for the normal functioning of any organism. Various environmental factors, chemicals and endogenous agents constantly challenge integrity of the genome resulting in mutagenesis. Over the past few decades multiple reports suggest that DNA can adopt alternative conformations other than the right handed double helix. Such structures occur within the context of B-DNA as sequence dependent structural variations and are facilitated by free energy derived from negative supercoiling, which may be generated during physiological processes like transcription, replication, etc. or...

  17. Evaluation of Alternate DNA Structures at c-MYC Fragile Region Associated with t(8;14) Translocation And Role of GNG Motifs During G-quadruplex Formation

    Das, Kohal
    Watson-Crick paired B-form DNA is the genetic material in most of the biological systems. Integrity of DNA is of utmost importance for the normal functioning of any organism. Various environmental factors, chemicals and endogenous agents constantly challenge integrity of the genome resulting in mutagenesis. Over the past few decades multiple reports suggest that DNA can adopt alternative conformations other than the right handed double helix. Such structures occur within the context of B-DNA as sequence dependent structural variations and are facilitated by free energy derived from negative supercoiling, which may be generated during physiological processes like transcription, replication, etc. or...

  18. Isolation And Identification of Tropane Alkaloid Producing Endophytic Fungi from Datura Metel L., And Studies on Colletotrichum Boninense Recombinant Putrescine N-mehtyltransferase

    Naik, Tanushree
    Datura metel is a herbaceous plant found in almost all tropical parts of the world. It belongs to the family Solanaceae whose members, viz. Duboisia, Atropa, Hyoscyamus and Datura plants are known to produce tropane alkaloids- hyoscyamine and scopolamine which are most noted for their therapeutic use as anti-cholinergic agents. Since these alkaloids are produced in very low amounts in plants, alternative sources and methods of production for these alkaloids have been crucial in meeting the demands for these drugs. Endophytic fungi inhabiting a plant may have the potential to produce the same compounds as the host plants. The aim...

  19. Isolation And Identification of Tropane Alkaloid Producing Endophytic Fungi from Datura Metel L., And Studies on Colletotrichum Boninense Recombinant Putrescine N-mehtyltransferase

    Naik, Tanushree
    Datura metel is a herbaceous plant found in almost all tropical parts of the world. It belongs to the family Solanaceae whose members, viz. Duboisia, Atropa, Hyoscyamus and Datura plants are known to produce tropane alkaloids- hyoscyamine and scopolamine which are most noted for their therapeutic use as anti-cholinergic agents. Since these alkaloids are produced in very low amounts in plants, alternative sources and methods of production for these alkaloids have been crucial in meeting the demands for these drugs. Endophytic fungi inhabiting a plant may have the potential to produce the same compounds as the host plants. The aim...

  20. Physiological And Exogenous Means of Regulating DNA Damage Response : Insights into Mechanisms of DNA Repair And Genomic Instability

    Sebastian, Robin
    Maintenance of genomic integrity with high fidelity is of prime importance to any organism. An insult which may result in compromised genome integrity is prevented or its consequences are monitored by advanced cellular networks, collectively called the DNA damage response (DDR). Various DNA repair pathways, which are part of DDR, constantly correct the genome in the event of any undesirable change in the genetic material and prevent the transmission of any impairment to daughter cells. Non homologous DNA end joining (NHEJ) is the predominant DNA repair pathway associated with DDR in higher eukaryotes, correcting double-strand breaks (DSBs). Microhomology mediated end...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.