
Nair, Asha M
Efficient road network and connectivity play vital role in the development of any country. Majority of the rural roads are unpaved and connectivity of rural roads is always a major challenge. Unpaved roads are also used for temporary transportation facilities like access roads, haul roads for mines, forest roads and parking lots. Since these roads do not have asphalt surfacing, they are subjected to early failures due to distresses like rutting, pot holes and depressions . Stabilization of unpaved roads using geosynthetics has been proved to be promising in increasing the lifespan of these roads because they facilitate economical, aesthetic...

Sat Kumar, *
The knowledge of soil moisture is of pronounced importance in various applications e.g. flood control, agricultural production and effective water resources management. These applications require the knowledge of spatial and temporal variation of the soil moisture in the watershed. There are three approaches of estimating/measuring soil moisture namely,(i) insitu measurements,(ii) remote sensing, and(iii) hydrological modelling. The in situ techniques of measurement provide relatively accurate information at point scale but are not feasible to gather in large numbers relevant for a watershed. The soil moisture can be simulated by hydrological models at the desired spatial and temporal resolution, but these simulations...

Bhattacharya, Paramita
Limit analysis based upon the theory of plasticity is one of the very useful numerical techniques to determine the failure loads of different civil and mechanical engineering structures for a material following an associated flow rule. The limiting values of the collapse loads, namely, lower and upper bounds, can be bracketed quite accurately with the application of the lower and upper bound theorems of the limit analysis. With the advancement of the finite elements and different robust optimization techniques, the numerical limit analysis approach in association with finite elements is becoming very popular to assess the stability of various complicated...

Ray, Sonalisa
Crack propagation in structures when subjected to fatigue loading, follows three different phases namely  short crack growth, stable crack growth and unstable crack growth. Accurate fatigue life prediction demands the consideration of every crack propagation phase rather than only the stable crack growth stage. Further, the use of existing crack growth laws in structures with small cracks underpredicts the growth rate compared to experimentally observed ones, thereby leading to an unsafe design and keeping the structure in a potentially dangerous state. In the present work, an attempt is made to establish fatigue crack propagation laws for plain concrete, reinforced...

Choudhary, Shalu
In structural analysis and design it is important to consider the effects of uncertainties in loading and material properties in a rational way. Uncertainty in material properties such as heterogeneity in elastic and mass properties can be modeled as a random field. For computational purpose, it is essential to discretize and represent the random field. For a field with known second order statistics, such a representation can be achieved by KarhunenLo`eve (KL) expansion. Accordingly, the random field is represented in a truncated series expansion using a few eigenvalues and associated eigenfunctions of the covariance function, and corresponding random coefficients.
The...

Pavan, G S
Masonry structures constitute a significant portion of building stock worldwide. Seismic performance of unreinforced masonry has been far from satisfactory. Masonry is purported to be a major source of hazard during earthquakes by reconnaissance surveys conducted aftermath of an earthquake. Reasons for the poor performance of masonry structures are more than one namely lack of deformational capacity, poor tensile strength & lack of earthquake resistance features coupled with poor quality control and large variation in strength of materials employed. Fibre Reinforced Plastic (FRP) composites have emerged as an efficient strengthening technique for reinforced concrete structures over the past two decades....

Rahman, Tauhidur
Selecting the design ground motion parameters for future earthquakes is a challenging task in earthquake engineering. The intensity of ground shaking depends on the physics of the earthquake process, the seismic wave characteristics, damping and density of the elastic medium. The important parameters commonly used in engineering application are Peak Ground Acceleration (PGA) and response spectrum. This thesis addresses the question of how the above parameters can be rationally estimated for a very highly Seismic zone like North Eastern Region of India (NERI). A detailed literature review and necessity of engineering seismic hazard estimation for NERI is presented in Chapter...

Rai, Pawan Kumar
Water distribution systems convey drinking water from treatment plant and make available to consumers’ taps. It consists of essential components like pipes, valves, pumps, tanks and reservoirs etc. The main concern in the working of a water distribution system is to assure customer demands under a choice of quantity and quality throughout the complete life span for the probable loading situations. However, in some cases, the existing infrastructure may not be adequate to meet the customer’s requirements. In such cases, system modeling plays an important role in proper management of water supply systems. In present scenario, modeling plays a significant...

Hemalatha, T
Evolution of concrete is continuously taking place to meet the evergrowing demands of the construction industry. Self compacting concrete (SCC) has emerged as a result of this demand to overcome the scarcity of labour. SCC is widely replacing normal vibrated concrete (NVC) these days owing to its advantages such as homogeneity of the mix, filling ability even in heavily congested reinforcement, smooth finish, reduction in construction time etc.
The ingredients used for SCC is the same as that of the NVC. But the proportioning of ingredients to achieve self compactability alters the microstructure of SCC which in turn affects the...

Mungule, Mahesh Parshuram
It is quite well known that fracture behavior of concrete is complex and is influenced by several factors. Apart from material properties, geometric parameters influence fracture behavior and one notable phenomenon is size effect. The existence of the size effect in concrete is well known and various attempts to model the behavior is
well documented in literature. However the approach by Bazant to describe the size
effect behavior in concrete has received considerable attention. The major advantage
of developing the size effect law for concrete is the ability to describe the fracture behavior (namely failure strength) of large size structures inaccessible to laboratory...

Dhanya, C T
The land–atmosphere interactions and the coupling between climate and land surface hydrological processes are gaining interest in the recent past. The increased knowledge in hydro climatology and the global hydrological cycle, with terrestrial and atmospheric feedbacks, led to the utilization of the climate variables and atmospheric teleconnections in modeling the hydrological processes like rainfall and runoff. Numerous statistical and dynamical models employing different combinations of predictor variables and mathematical equations have been developed on this aspect. The relevance of predictor variables is usually measured through the observed linear correlation between the predictor and the predictand. However, many predictor climatic variables...

Herkal, R N

Stalin, V K

Sharma, G K

Sarkar, Abhijit

Shantharajanna, H R

Vinod, P

Narasimhan, S

Sawant, Priyadarshi H

Khatri, Vikash
A triangular Bspline (DMSspline)based finite element method (TBSFEM) is proposed along with possible enrichment through discontinuous Galerkin, continuousdiscontinuous Galerkin finite element (CDGFE) and stabilization techniques. The developed schemes are also numerically explored, to a limited extent, for weak discretizations of a few second order partial differential equations (PDEs) of interest in solid mechanics. The presently employed functional approximation has both affine invariance and convex hull properties. In contrast to the Lagrangian basis functions used with the conventional finite element method, basis functions derived through nth order triangular Bsplines possess (n ≥ 1) global continuity. This is usually not possible with...