Recursos de colección

ETD at Indian Institute of Science (3.494 recursos)

Repository of Theses and Dissertations of Indian Institute of Science, Bangalore, India. The repository has been developed to capture, disseminate and preserve research theses of Indian Institute of Science.

Materials Research Centre (mrc)

Mostrando recursos 1 - 20 de 76

  1. Mechanistic Understanding of Growth and Directed Assembly of Nanomaterials

    Kundu, Subhajit
    When materials approach the size of few nanometers, they show properties which are significantly different from their bulk counterpart. Such unique/improved properties make them potential candidate for several emerging applications. At the reduced dimension, controlling the shape of nanocrystals provides an effective way to tune several material properties. In this regard, wet chemical synthesis has been established as the ultimate route to synthesize nanocrystals at ultra-small dimensions with excellent control over the morphology. However, the use of surfactant poses a barrier into efficient realization of its application as it requires a clean interface for better performance. Exercise of available cleaning...

  2. Solution-Processed Optoelectronic Devices Based on Colloidal Semiconductor Nanostructures for Photodetection

    Ivan, Jebakumar, D S
    Miniaturisation of electronic and optoelectronic devices have enabled the realization of system-on-a-chip technology in modern image sensors, where the photo sensor arrays and the corresponding signal processing circuitry are monolithically integrated in a single chip. Apart from intrinsic advantages, the drive towards miniaturisation has been further fuelled by the exotic properties exhibited by semiconductor materials at the nano scale. As the dimension of the material is gradually reduced from the bulk, interesting physical and chemical properties begin to emerge owing to the increased confinement of charge carriers in different spatial dimensions. Solution-processed optoelectronics have revolutionised the field of device physics...

  3. Synthesis and Applications of Size and Shape Controlled Magnetic Oxide Particles for Magnetorheological Fluids

    Anupama, A V
    Magnetorheological fluids (MRFs) are non-colloidal stable suspensions of polarizable mesoscale soft magnetic particles, usually metallic Fe-particles, in a carrier liquid such as oil or water; the solidity of which can be tuned by varying the applied magnetic field strength. Magnetorheological fluids are agile candidates for impact mitigation due to their tunable “solidity”, quick and complete reversibility of physical states, durability and reusability in comparison to their mechanical counterparts. The highly desirable property of an MRF is its yield strength and hence the conventional MRFs are Fe-based. However, uncoated Fe-particles suffer from poor chemical and thermo-oxidative stabilities, poor sedimentation stability and redispersibilities...

  4. Stress and Microstructural Evolution During the Growth of Transition Metal Oxide Thin Films by PVD

    Narayanachari, K V L V
    System on Chip (SoC) and System in Package (SiP) are two electronic technologies that involve integrating multiple functionalities onto a single platform. When the platform is a single wafer, as in SOC, it requires the ability to deposit various materials that enable the different functions on to an underlying substrate that can host the electronic circuitry. Transition metal oxides which have a wide range of properties are ideal candidates for the functional material. Si wafer on which micro-electronics technology is widely commercialized is the ideal host platform. Integrating oxides with Si, generally in the form of thin films as required...

  5. Development of Polyethylene Grafted Graphene Oxide Reinforced High Density Polyethylene Bionanocomposites

    Upadhyay, Rahul Kumar
    The uniform dispersion of the nano fillers without agglomeration in a polymeric matrix is widely adapted for the purpose of mechanical properties enhancement. In the context to biomedical applications, the type and amount of nanoparticles can potentially influence the biocompatibility. In order to address these issues, High Density Polyethylene (HDPE) based composites reinforced with graphene oxide (GO) were prepared by melt mixing followed by compression moulding. In an attempt to tailor the dispersion and to improve the interfacial adhesion, polyethylene (PE) was immobilized onto GO sheets by nucleophilic addition-elimination reaction. A good combination of yield strength (ca. 20 MPa), elastic...

  6. Developmental Strategies to Address Prosthetic Infection and Magneto-Responsive Biomaterials for Orthopaedic Applications

    Sunil Kumar, B
    The issue of prosthetic infection leading to implant failure due to the formation of bacterial biofilms on biomaterial surfaces has been widely recognized as a major issue, often leading to revision surgery. The growing number of patients requiring synthetic biomaterials as implants is on the rise and so is the risk of infection arising from pre/peri-/post-operative surgical procedures. Traditional antibiotic treatment has led to the emergence of bacterial drug resistance. Therefore, the development of novel bactericidal methods to combat drug resistant microbial pathogens is the need of the hour. The first part of the thesis is an attempt to address...

  7. Vapour Phase Transport Growth of One-Dimensional Zno Nanostructures and their Applications

    Sugavaneshwar, R P
    One-dimensional (1D) nanostructures have gained tremendous attention over the last decade due to their wide range of potential applications. Particularly, ZnO 1D nanostructures have been investigated with great interest due to their versatility in synthesis with potential applications in electronics, optics, optoelectronics, sensors, photocatalysts and nanogenerators. The thesis deals with the challenges and the answer to grow ZnO 1D nanostructure by vapor phase transport (VPT) continuously without any length limitation. The conventional VPT technique has been modified for the non-catalytic growth of ultralong ZnO 1D nanostructures and branched structures in large area with controllable aspect ratio. It has been shown...

  8. Anodized Zirconia Nanostructures

    Choudhury, Tanushree H
    Electrochemical anodization is a facile technique to synthesize ordered oxide nanostructures. Though the number of materials exhibiting anodized nanostructures has increased considerably in the recent years, only nanoporous alumina and nanotubular titania have been investigated extensively for various applications. Anodized nanostructures, nanotubes and nanopores, of zirconia are also of considerable interest for applications such as templates, sensors and solid-oxide fuel cells. In spite of the potential applications of zirconia, these nanostructures have been barely studied. As most of these applications require elevated temperatures in excess of 400C, thermal stability becomes an important attribute. Even though zirconia (Tm=2715C) has as higher...

  9. Development of CMOS-Compatible, Microwave-Assisted Solution Processing of Nanostructured Zine Ferrite Films for Gigahertz Circuits

    Sai, Ranajit
    The development of radio frequency integrated circuits (RFICs), especially the dream of integrating analog, digital and radio frequency (RF) components on the same chip that is commonly known as System-on-a-Chip (SoC), is crucial to mobile communications of the future. Such SoC approach offers enhanced performance, greater reliability, and substantially less power consumption of integrated circuits while reducing overall physical size and thus manufacturing cost. However, the progress has been stalled by the lack of miniaturized inductor elements. Rise of unwanted parasitic effects limits down-scaling of the inductor structures and leaves the use of magnetic coating as a viable and attractive...

  10. Investigations into the Structural and Physical Properties of Li2O-M2O-2B2O3 (M=Li, Na & K), BaO-TiO2-B2O3 and 2Bi2O3-B2O3 Glass Systems

    Paramesh, Gadige
    Borate glasses and glass-nano/microcrystal composite fabrication and investigations into their physical properties, have been interesting from their multifunctionalities view point. Certain borate structural units possess high hyperpolarizabilities and give rise to high nonlinear optical effects. High refractive index materials are important for photonic applications. Heavy metal oxide (Bi2O3) containing compounds have high refractive indices. Glasses embedded with wide band-gap semiconducting oxide crystals such as TiO2 received much attention due to their easy processing, stability and promising physical properties. Though TiO2 is used as nucleating agent to fabricate glass-ceramics of various phases, crystallization of TiO2 in glass matrices is difficult and the...

  11. Earth Abundant Alternate Energy Materials for Thin Film Photovoltaics

    Banavoth, Murali
    Inexhaustible solar energy, which provides a clean, economic and green energy, seems to be an alternative solution, for current and future energy demands. Harvesting solar energy presents a challenge in using eco-friendly, earth abundant and inexpensive materials. Although present CdTe and Cu (In, Ga)Se2 (CIGS) technologies, provide light-to-electricity comparable to silicon technology, toxicity of Cd and scarcity of In limits the widespread utilization. Future tera-watt level module capacity would then be feasible by the low-cost technologies. The chalcogenide thin film technology would therefore provide the exceptional utilization in the large-area module monolithic integrations benefitting from the low material consumption owing...

  12. Investigations into the Microstructure Dependent Dielectric, Piezoelectric, Ferroelectric and Non-linear Optical Properties of Sr2Bi4Ti5O18 Ceramics

    Shet, Tukaram
    Ferroelectric materials are very promising for a variety of applications such as high-permittivity capacitors, ferroelectric memories, pyroelctric sensors, piezoelectric and electrostrictive transducers and electro-optic devices, etc. In the area of ferroelectric ceramics, lead-based compounds, which include lead zirconatetitanate (PZT) solid solutions, occupy an important place because of their superior physical properties. However, due to the toxicity of lead, there is an increasing concern over recycling and disposing of the devices made out of these compounds, which has compelled the researchers around the globe to search for lead-free compounds with promising piezo and ferroelectric properties. Ferroelectric materials that belong to Aurivillius...

  13. Studies on Effect of Defect Doping and Additives on Cr2O3 and SnO2 Based Metal Oxide Semiconductor Gas Sensors

    Kamble, Vinayak Bhanudas
    Metal Oxide (MO)semiconductors are one of the most widely used materials in commercial gas sensor devices. The basic principle of chemoresistive gas sensor operation stems on the high sensitivity of electrical resistance to ambient gaseous conditions. Depending on whether the oxide is "p type" or "n type", the resistance increases (or decrease), when placed in atmosphere containing reducing (or oxidizing) gases. The study of conductometric metal oxide semiconductor gas sensors has dual importance in view of their technological device applications and understanding fundamental MO-gas interactions. Metal oxides based sensors offer high thermal, mechanical and chemical stability. A large number of...

  14. Nanostructurization of Transition Metal Silicides for High Temperature Thermoelectric Materials

    Perumal, Suresh
    Transition Metal Silicides (TMS) are well known refractory materials because of their high thermal and structural stability at elevated temperature. In addition TMS materials are known for their moderate thermoelectric applications at high temperature since they exhibit superior semiconducting behavior. But TMS materials have relatively higher thermal conductivity which limits their applications in the field of thermoelectrics. So it is important to reduce their thermal conductivity to enhance conversion efficiency. In this regard, the work is performed to reduce the thermal conductivity of selected silicides such as CrSi2, MnSi2, and β-FeSi2 through alloys scattering and nano-structuring by mechanical alloying. A...

  15. Development of Metal Oxide/Composite Nanostructures via Microwave-Assisted Chemical Route and MOCVD : Study of their Electrochemical, Catalytic and Sensing Applications

    Jena, Anirudha

  16. Interfacing Biomolecules with Nanomaterials for Novel Applications

    Lal, Nidhi
    This thesis deals with the research work carried out for the development of novel applications by integrating biomolecules with various nanostructures. The thesis is organized as follows: Chapter 1 reviews the properties of nanomaterials which are important to consider while developing them for various biological and other applications. It discusses the factors which affect the cytotoxicity of nanocrystals towards living cells, photocatalytic mechanisms of nanocrystals that work behind the inactivation of bacterial cells and gas sensing properties of nanocrystals. It also mentions about the integration of biomolecules with nanomaterials which is useful for the development of biosensors, materials that are presently used...

  17. Novel 1-D and 2-D Carbon Nanostructures Based Absorbers for Photothermal Applications

    Selvakumar, N
    Solar thermal energy is emerging as an important source of renewable energy for meeting the ever-increasing energy requirements of the world. Solar selective coatings are known to enhance the efficiency of the photo thermal energy conversion. An ideal solar selective coating has zero reflectance in the solar spectrum region (i.e., 0.3-2.5 µm) and 100% reflectance in the infrared (IR) region (i.e. 2.5-50 µm). In this thesis, novel carbon nanotubes (CNT) and graphene based absorbers have been developed for photo thermal applications. Carbon nanotubes have good optical properties (i.e., α and ε close to 1), high aspect ratios (> 150), high...

  18. Physicochemical Characterization and Gas Sensing Studies of Cr1-xFexNbO4 and Application of Principal Component Analysis

    Sree Rama Murthy, A
    Monitoring the working environment of laboratories and industries for pollutants is of primary concern to ensure the healthiness of working personnel. Semiconducting metal oxides (SMOs) are sensitive to the gas ambience and can be tuned for sensing purpose. As SMOs are not selective, an array of sensors with differential selectivity may resolve to great extent. The objective of the thesis is to understand the physicochemical properties and gas sensing characteristics of Cr1-xFexNbO4. Applying principal component analysis to the sensor response data either for selection of features or for differentiation of analysts is also of concern. Preparation of Cr1-xFexNbO4, phase characterization,...

  19. Development of Multifunctional Biomaterials and Probing the Electric Field Stimulated Cell Functionality on Conducting Substrates : Experimental and Theoretical Studies

    Ravikumar, K
    Materials with appropriate combinations of multifunctional properties (strength, toughness, electrical conductivity and piezoelectricity) together with desired biocompatibility are promising candidates for biomedical applications. Apart from these material properties, recent studies have shown the efficacy of electric field in altering cell functionality in order to elicit various cell responses, like proliferation, differentiation, apoptosis (programmed cell death) on conducting substrates in vitro. In the above perspective, the current work demonstrates how CaTiO3 (CT) addition to Hydroxyapatite (HA) can be utilised to obtain an attractive combination of long crack fracture toughness (up to 1.7 MPa.m1/2 measured using single edge V-notch beam technique) and...

  20. Mechanisms of Formation and Thermal Stabililty of Functional Nanostructures

    Anumol, E A
    There are many challenges in materializing the applications utilizing inorganic nanoparticles. The primary drawback is the degradation of properties due to aggregation and sintering either due to elevated temperatures or prevailing chemical/electrochemical conditions. In this thesis, various wet chemical synthesis methods are developed to obtain metal nanostructures with enhanced thermal stability. The thesis is organized as below: Chapter 1 presents the problems and challenges in materializing the application of nanomaterials associated with the thermal stability of nanomaterials. A review of the existing techniques to improve the thermal stability and the scope of the thesis are presented. Chapter 2 gives a...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.