Mostrando recursos 1 - 11 de 11

  1. Multispecies Analysis of Expression Pattern Diversification in the Recently Expanded Insect Ly6 Gene Family

    Tanaka, Kohtaro; Diekmann, Yoan; Hazbun, Alexis; Hijazi, Assia; Vreede, Barbara; Roch, Fernando; Sucena, Élio
    The deposited article version is a "MBE Advance Access" published on March 4, 2015" provided by Oxford University Press, and it contains attached the supplementary materials within the pdf.

  2. Multispecies Analysis of Expression Pattern Diversification in the Recently Expanded Insect Ly6 Gene Family

    Tanaka, Kohtaro; Diekmann, Yoan; Hazbun, Alexis; Hijazi, Assia; Vreede, Barbara; Roch, Fernando; Sucena, Élio
    The deposited article version is a "MBE Advance Access" published on March 4, 2015" provided by Oxford University Press, and it contains attached the supplementary materials within the pdf.

  3. Co-option of a coordinate system defined by the EGFr and Dpp pathways in the evolution of a morphological novelty

    Vreede, Barbara MI; Lynch, Jeremy A; Roth, Siegfried; Sucena, Élio
    Morphological innovation is an elusive and fascinating concept in evolutionary biology. A novel structure may open up an array of possibilities for adaptation, and thus is fundamental to the evolution of complex multicellular life. We use the respiratory appendages on the dorsal-anterior side of the Drosophila eggshell as a model system for morphological novelty. To study the co-option of genetic pathways in the evolution of this novelty we have compared oogenesis and eggshell patterning in Drosophila melanogaster with Ceratitis capitata, a dipteran whose eggs do not bear dorsal appendages.

  4. Steroid Hormone Signaling Is Essential to Regulate Innate Immune Cells and Fight Bacterial Infection in Drosophila

    Regan, Jennifer C.; Brandão, Ana S.; Leitão, Alexandre B.; Mantas Dias, Ângela Raquel; Sucena, Élio; Jacinto, António; Zaidman-Rémy, Anna
    Coupling immunity and development is essential to ensure survival despite changing internal conditions in the organism. Drosophila metamorphosis represents a striking example of drastic and systemic physiological changes that need to be integrated with the innate immune system. However, nothing is known about the mechanisms that coordinate development and immune cell activity in the transition from larva to adult. Here, we reveal that regulation of macrophage-like cells (hemocytes) by the steroid hormone ecdysone is essential for an effective innate immune response over metamorphosis. Although it is generally accepted that steroid hormones impact immunity in mammals, their action on monocytes (e.g....

  5. Host Adaptation Is Contingent upon the Infection Route Taken by Pathogens

    Martins, Nelson E.; Faria, Vitor G.; Teixeira, Luis; Magalhães, Sara; Sucena, Élio
    Evolution of pathogen virulence is affected by the route of infection. Also, alternate infection routes trigger different physiological responses on hosts, impinging on host adaptation and on its interaction with pathogens. Yet, how route of infection may shape adaptation to pathogens has not received much attention at the experimental level. We addressed this question through the experimental evolution of an outbred Drosophila melanogaster population infected by two different routes (oral and systemic) with Pseudomonas entomophila. The two selection regimes led to markedly different evolutionary trajectories. Adaptation to infection through one route did not protect from infection through the alternate route,...

  6. Filling the gaps of dinosaur eggshell phylogeny: Late Jurassic Theropod clutch with embryos from Portugal

    Araújo, Ricardo; Castanhinha, Rui; Martins, Rui M. S.; Mateus, Octávio; Hendrickx, Christophe; Beckmann, F.; Schell, N.; Alves, L. C.
    The non-avian saurischians that have associated eggshells and embryos are represented only by the sauropodomorph Massospondylus and Coelurosauria (derived theropods), thus missing the basal theropod representatives. We report a dinosaur clutch containing several crushed eggs and embryonic material ascribed to the megalosaurid theropod Torvosaurus. It represents the first associated eggshells and embryos of megalosauroids, thus filling an important phylogenetic gap between two distantly related groups of saurischians. These fossils represent the only unequivocal basal theropod embryos found to date. The assemblage was found in early Tithonian fluvial overbank deposits of the Lourinhã Formation in West Portugal. The morphological, microstructural and...

  7. Drosophilasessile hemocyte clusters are true hematopoietic tissues that regulate larval blood cell differentiation

    Sucena, Élio
    Virtually all species of coelomate animals contain blood cells that display a division of labor necessary for homeostasis. This functional partition depends upon the balance between proliferation and differentiation mostly accomplished in the hematopoietic organs. In Drosophila melanogaster, the lymph gland produces plasmatocytes and crystal cells that are not released until pupariation. Yet, throughout larval development, both hemocyte types increase in numbers. Mature plasmatocytes can proliferate but it is not known if crystal cell numbers increase by self-renewal or by de novo differentiation. We show that new crystal cells in third instar larvae originate through a Notch-dependent process of plasmatocyte...

  8. A Discrete Model of Drosophila Eggshell Patterning Reveals Cell-Autonomous and Juxtacrine Effects

    Fauré, Adrien; Vreede, Barbara M. I.; Sucena, Élio; Chaouiya, Claudine
    The Drosophila eggshell constitutes a remarkable system for the study of epithelial patterning, both experimentally and through computational modeling. Dorsal eggshell appendages arise from specific regions in the anterior follicular epithelium that covers the oocyte: two groups of cells expressing broad (roof cells) bordered by rhomboid expressing cells (floor cells). Despite the large number of genes known to participate in defining these domains and the important modeling efforts put into this developmental system, key patterning events still lack a proper mechanistic understanding and/or genetic basis, and the literature appears to conflict on some crucial points. We tackle these issues with...

  9. Drosophila Adaptation to Viral Infection through Defensive Symbiont Evolution

    Faria, Vitor G.; Martins, Nelson E.; Magalhães, Sara; Paulo, Tânia F.; Nolte, Viola; Schlötterer, Christian; Sucena, Élio; Teixeira, Luis
    Microbial symbionts can modulate host interactions with biotic and abiotic factors. Such interactions may affect the evolutionary trajectories of both host and symbiont. Wolbachia protects Drosophila melanogaster against several viral infections and the strength of the protection varies between variants of this endosymbiont. Since Wolbachia is maternally transmitted, its fitness depends on the fitness of its host. Therefore, Wolbachia populations may be under selection when Drosophila is subjected to viral infection. Here we show that in D. melanogaster populations selected for increased survival upon infection with Drosophila C virus there is a strong selection coefficient for specific Wolbachia variants, leading...

  10. Drosophila Adaptation to Viral Infection through Defensive Symbiont Evolution

    Paulo, Tânia F.; Nolte, Viola; Schlötterer, Christian; Sucena, Élio; Teixeira, Luis
    Microbial symbionts can modulate host interactions with biotic and abiotic factors. Such interactions may affect the evolutionary trajectories of both host and symbiont. Wolbachia protects Drosophila melanogaster against several viral infections and the strength of the protection varies between variants of this endosymbiont. Since Wolbachia is maternally transmitted, its fitness depends on the fitness of its host. Therefore, Wolbachia populations may be under selection when Drosophila is subjected to viral infection. Here we show that in D. melanogaster populations selected for increased survival upon infection with Drosophila C virus there is a strong selection coefficient for specific Wolbachia variants, leading...

  11. Drosophila melanogaster larvae make nutritional choices that minimize developmental time

    Rodrigues, Marisa A.; Martins, Nelson E.; Balancé, Lara F.; Broom, Lara N.; Dias, António J.S.; Fernandes, Ana Sofia D.; Rodrigues, Fábio; Sucena, Élio; Mirth, Christen K.
    Organisms from slime moulds to humans carefully regulate their macronutrient intake to optimize a wide range of life history characters including survival, stress resistance, and reproductive success. However, life history characters often differ in their response to nutrition, forcing organisms to make foraging decisions while balancing the trade-offs between these effects. To date, we have a limited understanding of how the nutritional environment shapes the relationship between life history characters and foraging decisions. To gain insight into the problem, we used a geometric framework for nutrition to assess how the protein and carbohydrate content of the larval diet affected key...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.