Mostrando recursos 1 - 20 de 224

  1. 2+2 Moulton Configuration

    Yoshimi, Naoko
    We pose a new problem of collinear central configurations in Newtonian $n$-body problem. It is known that the configuration of two bodies moving along the Newtonian force is always a collinear central configuration. Can we add new two bodies on the straight line of initial two bodies without changing the move of the initial two bodies and the configuration of the four bodies is central, too? We call it 2+2 Moulton configuration. We find three special solutions to this problem and find each mass of new two bodies is zero.

  2. 2+2 Moulton Configuration

    Yoshimi, Naoko
    We pose a new problem of collinear central configurations in Newtonian $n$-body problem. It is known that the configuration of two bodies moving along the Newtonian force is always a collinear central configuration. Can we add new two bodies on the straight line of initial two bodies without changing the move of the initial two bodies and the configuration of the four bodies is central, too? We call it 2+2 Moulton configuration. We find three special solutions to this problem and find each mass of new two bodies is zero.

  3. 2+2 Moulton Configuration

    Yoshimi, Naoko
    We pose a new problem of collinear central configurations in Newtonian $n$-body problem. It is known that the configuration of two bodies moving along the Newtonian force is always a collinear central configuration. Can we add new two bodies on the straight line of initial two bodies without changing the move of the initial two bodies and the configuration of the four bodies is central, too? We call it 2+2 Moulton configuration. We find three special solutions to this problem and find each mass of new two bodies is zero.

  4. 2+2 Moulton Configuration

    Yoshimi, Naoko
    We pose a new problem of collinear central configurations in Newtonian $n$-body problem. It is known that the configuration of two bodies moving along the Newtonian force is always a collinear central configuration. Can we add new two bodies on the straight line of initial two bodies without changing the move of the initial two bodies and the configuration of the four bodies is central, too? We call it 2+2 Moulton configuration. We find three special solutions to this problem and find each mass of new two bodies is zero.

  5. 2+2 Moulton Configuration

    Yoshimi, Naoko
    We pose a new problem of collinear central configurations in Newtonian $n$-body problem. It is known that the configuration of two bodies moving along the Newtonian force is always a collinear central configuration. Can we add new two bodies on the straight line of initial two bodies without changing the move of the initial two bodies and the configuration of the four bodies is central, too? We call it 2+2 Moulton configuration. We find three special solutions to this problem and find each mass of new two bodies is zero.

  6. Geodesics on Rotational Surfaces in Pseudo-Galilean Space

    Yoon, Dae Won; Karacan, Murat Kemal; Bukcu, Bahaddin
    In this paper, we study rotational surfaces in the pseudo-Galilean three-space $\mathbb G_3^1$ with pseudo-Euclidean rotations and isotropic rotations. In particular, we investigate properties of geodesics on rotational surfaces in $\mathbb G_3^1$ and give some examples.

  7. Geodesics on Rotational Surfaces in Pseudo-Galilean Space

    Yoon, Dae Won; Karacan, Murat Kemal; Bukcu, Bahaddin
    In this paper, we study rotational surfaces in the pseudo-Galilean three-space $\mathbb G_3^1$ with pseudo-Euclidean rotations and isotropic rotations. In particular, we investigate properties of geodesics on rotational surfaces in $\mathbb G_3^1$ and give some examples.

  8. Geodesics on Rotational Surfaces in Pseudo-Galilean Space

    Yoon, Dae Won; Karacan, Murat Kemal; Bukcu, Bahaddin
    In this paper, we study rotational surfaces in the pseudo-Galilean three-space $\mathbb G_3^1$ with pseudo-Euclidean rotations and isotropic rotations. In particular, we investigate properties of geodesics on rotational surfaces in $\mathbb G_3^1$ and give some examples.

  9. Geodesics on Rotational Surfaces in Pseudo-Galilean Space

    Yoon, Dae Won; Karacan, Murat Kemal; Bukcu, Bahaddin
    In this paper, we study rotational surfaces in the pseudo-Galilean three-space $\mathbb G_3^1$ with pseudo-Euclidean rotations and isotropic rotations. In particular, we investigate properties of geodesics on rotational surfaces in $\mathbb G_3^1$ and give some examples.

  10. Geodesics on Rotational Surfaces in Pseudo-Galilean Space

    Yoon, Dae Won; Karacan, Murat Kemal; Bukcu, Bahaddin
    In this paper, we study rotational surfaces in the pseudo-Galilean three-space $\mathbb G_3^1$ with pseudo-Euclidean rotations and isotropic rotations. In particular, we investigate properties of geodesics on rotational surfaces in $\mathbb G_3^1$ and give some examples.

  11. Kähler Dynamics for the Universal Multi-Robot Fleet

    Ivancevic, Vladimir G. Ivancevic
    A general model is formulated for a universal fleet of all unmanned vehicles, including Aerial Vehicles (UAVs), Ground Vehicles (UGVs), Sea Vehicles (USVs) and Underwater Vehicles (UUVs), as a geometric Kähler dynamics and control system. Based on the Newton-Euler dynamics of each vehicle, a control system for the universal autonomous fleet is designed as a combined Lagrangian and Hamiltonian form. The associated continuous system representing a very large universal fleet is given in Appendix in the form of the Kähler-Ricci flow

  12. Kähler Dynamics for the Universal Multi-Robot Fleet

    Ivancevic, Vladimir G. Ivancevic
    A general model is formulated for a universal fleet of all unmanned vehicles, including Aerial Vehicles (UAVs), Ground Vehicles (UGVs), Sea Vehicles (USVs) and Underwater Vehicles (UUVs), as a geometric Kähler dynamics and control system. Based on the Newton-Euler dynamics of each vehicle, a control system for the universal autonomous fleet is designed as a combined Lagrangian and Hamiltonian form. The associated continuous system representing a very large universal fleet is given in Appendix in the form of the Kähler-Ricci flow

  13. Kähler Dynamics for the Universal Multi-Robot Fleet

    Ivancevic, Vladimir G.
    A general model is formulated for a universal fleet of all unmanned vehicles, including Aerial Vehicles (UAVs), Ground Vehicles (UGVs), Sea Vehicles (USVs) and Underwater Vehicles (UUVs), as a geometric Kähler dynamics and control system. Based on the Newton-Euler dynamics of each vehicle, a control system for the universal autonomous fleet is designed as a combined Lagrangian and Hamiltonian form. The associated continuous system representing a very large universal fleet is given in Appendix in the form of the Kähler-Ricci flow.

  14. Kähler Dynamics for the Universal Multi-Robot Fleet

    Ivancevic, Vladimir G.
    A general model is formulated for a universal fleet of all unmanned vehicles, including Aerial Vehicles (UAVs), Ground Vehicles (UGVs), Sea Vehicles (USVs) and Underwater Vehicles (UUVs), as a geometric Kähler dynamics and control system. Based on the Newton-Euler dynamics of each vehicle, a control system for the universal autonomous fleet is designed as a combined Lagrangian and Hamiltonian form. The associated continuous system representing a very large universal fleet is given in Appendix in the form of the Kähler-Ricci flow.

  15. Kähler Dynamics for the Universal Multi-Robot Fleet

    Ivancevic, Vladimir G.
    A general model is formulated for a universal fleet of all unmanned vehicles, including Aerial Vehicles (UAVs), Ground Vehicles (UGVs), Sea Vehicles (USVs) and Underwater Vehicles (UUVs), as a geometric Kähler dynamics and control system. Based on the Newton-Euler dynamics of each vehicle, a control system for the universal autonomous fleet is designed as a combined Lagrangian and Hamiltonian form. The associated continuous system representing a very large universal fleet is given in Appendix in the form of the Kähler-Ricci flow.

  16. Generalized Seiberg-Witten Equations on a Riemann Surface

    Dey, Rukmini; Thakre, Varun
    In this paper we consider twice-dimensionally reduced, generalized Seiberg-Witten (S-W) equations, defined on a compact Riemann surface. A novel feature of the reduction technique is that the resulting equations produce an extra “Higgs field”. Under suitable regularity assumptions, we show that the moduli space of gauge-equivalent classes of solutions to the reduced equations, is a smooth Kähler manifold and construct a pre-quantum line bundle over the moduli space of solutions.

  17. Generalized Seiberg-Witten Equations on a Riemann Surface

    Dey, Rukmini; Thakre, Varun
    In this paper we consider twice-dimensionally reduced, generalized Seiberg-Witten (S-W) equations, defined on a compact Riemann surface. A novel feature of the reduction technique is that the resulting equations produce an extra “Higgs field”. Under suitable regularity assumptions, we show that the moduli space of gauge-equivalent classes of solutions to the reduced equations, is a smooth Kähler manifold and construct a pre-quantum line bundle over the moduli space of solutions.

  18. Generalized Seiberg-Witten Equations on a Riemann Surface

    Dey, Rukmini; Thakre, Varun
    In this paper we consider twice-dimensionally reduced, generalized Seiberg-Witten (S-W) equations, defined on a compact Riemann surface. A novel feature of the reduction technique is that the resulting equations produce an extra “Higgs field”. Under suitable regularity assumptions, we show that the moduli space of gauge-equivalent classes of solutions to the reduced equations, is a smooth Kähler manifold and construct a pre-quantum line bundle over the moduli space of solutions.

  19. Generalized Seiberg-Witten Equations on a Riemann Surface

    Dey, Rukmini; Thakre, Varun
    In this paper we consider twice-dimensionally reduced, generalized Seiberg-Witten (S-W) equations, defined on a compact Riemann surface. A novel feature of the reduction technique is that the resulting equations produce an extra “Higgs field”. Under suitable regularity assumptions, we show that the moduli space of gauge-equivalent classes of solutions to the reduced equations, is a smooth Kähler manifold and construct a pre-quantum line bundle over the moduli space of solutions.

  20. Generalized Seiberg-Witten Equations on a Riemann Surface

    Dey, Rukmini; Thakre, Varun
    In this paper we consider twice-dimensionally reduced, generalized Seiberg-Witten (S-W) equations, defined on a compact Riemann surface. A novel feature of the reduction technique is that the resulting equations produce an extra “Higgs field”. Under suitable regularity assumptions, we show that the moduli space of gauge-equivalent classes of solutions to the reduced equations, is a smooth Kähler manifold and construct a pre-quantum line bundle over the moduli space of solutions.

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.