Recursos de colección

RiuNet. Repositorio institucional de la Universitat de Valencia (102.815 recursos)

RiuNet es el Repositorio Institucional de la Universitat Politècnica de València, gestionado por la Biblioteca, cuyo objetivo es ofrecer acceso en Internet a la producción científica, académica y corporativa de la comunidad universitaria con la finalidad de aumentar su visibilidad y hacerla accesible y preservable.

Mostrando recursos 1 - 3 de 3

  1. Strengthening connected Tychonoff topologies

    Shakhmatov, Dimitri; Tkachenko, Mikhail; Tkachuk, Vladimir V.; Wilson, Richard G.
    [EN] The problem of whether a given connected Tychonoff space admits a strictly finer connected Tychonoff topology is considered. We show that every Tychonoff space X satisfying ω (X) ≤ c and c (X) ≤ N0 admits a finer strongly σ-discrete connected Tychonoff topology of weight 2c. We also prove that every connected Tychonoff space is an open continuous image of a connected strongly σ-discrete submetrizable Tychonoff space. The latter result is applied to represent every connected topological group as a quotient of a connected strongly σ-discrete submetrizable topological group
    - 08-may-2018

  2. Finite approximation of stably compact spaces

    Smyth, M.B.; Webster, J.
    [EN] Finite approximation of spaces by inverse sequences of graphs (in the category of so-called topological graphs) was introduced by Smyth, and developed further. The idea was subsequently taken up by Kopperman and Wilson, who developed their own purely topological approach using inverse spectra of finite T0-spaces in the category of stably compact spaces. Both approaches are, however, restricted to the approximation of (compact) Hausdorff spaces and therefore cannot accommodate, for example, the upper space and (multi-) function space constructions. We present a new method of finite approximation of stably compact spaces using finite stably compact graphs, which when the...
    - 08-may-2018

  3. Cofinitely and co-countably projective spaces

    Mendoza Iturralde, Pablo; Tkachuk, Vladimir V.
    [EN] We show that X is cofinitely projective if and only if it is a finite union of Alexandroff compactatifications of discrete spaces. We also prove that X is co-countably projective if and only if X admits no disjoint infinite family of uncountable cozero sets. It is shown that a paracompact space X is co-countably projective if and only if there exists a finite set B C X such that B C U ϵ τ (X) implies │X\U│ ≤ ω. In case of existence of such a B we will say that X is concentrated around B. We prove that...
    - 08-may-2018

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.