Mostrando recursos 161 - 180 de 7.475

  1. La théorie élémentaire de la divisibilité est finiment axiomatisable

    Cegielski, Patrick

  2. The Elementary Theory of the Natural Lattice is Finitely Axiomatizable

    Cegielski, Patrick
    Accessible en ligne dans le cadre du projet Euclide http://projecteuclid.org/Dienst/UI/1.0/Summarize/euclid.ndjfl/1093635001

  3. La théorie des corps réels-clos inductifs est une extension conservative de l'arithmétique de Peano

    Cegielski, Patrick

  4. La théorie des corps inductifs archimédiens rationnellement complets

    Cegielski, Patrick

  5. Indécidabilité de la théorie des entiers naturels munis d'une énumération des premiers et de la divisibilité

    Cegielski, Patrick; Richard, Denis

  6. Definability, decidability and complexity

    Cegielski, Patrick

  7. Definability and decidability issues in extensions of the integers with the divisibility predicate

    Cegielski, Patrick; Matiyasevich, Yuri; Richard, Denis

  8. On arithmetical first-order theories allowing encoding and decoding of lists

    Cegielski, Patrick; Richard, Denis

  9. Decidability of natural integers equipped with Cantor pairing function and successor

    Cegielski, Patrick; Richard, Denis

  10. Decidability and p-destinies

    Cegielski, Patrick

  11. Constructivism: Mathematics, Logic, Philosophy and Linguistics

    Heinzmann, Gerhard; Ronzitti, Giuseppina

  12. La théorie élémentaire de la multiplication

    Cegielski, Patrick

  13. Modèles récursivement saturés de l'addition et de la multiplication des entiers naturels

    Cegielski, Patrick; Mc Aloon, Kenneth; Wilmers, George

  14. On the additive theory of prime numbers I

    Cegielski, Patrick; Richard, Denis; Vsemirnov, Maxim

  15. On the additive theory of prime numbers II

    Cegielski, Patrick; Richard, Denis; Vsemirnov, Maxim
    The undecidability of the additive theory of primes (with identity) as well as the theory Th(N,+, n -> p_n), where p_n denotes the (n+1)-th prime, are open questions. As a possible approach, we extend the latter theory by adding some extra function. In this direction we show the undecidability of the existential part of the theory Th(N, +, n -> p_n, n -> r_n), where r_n is the remainder of p_n divided by n in the euclidian division.

  16. C'est é-lé-mentaire

    Cegielski, Patrick

  17. Historique de la théorie élémentaire des ensembles

    Cegielski, Patrick

  18. Un fondement des Mathématiques

    Cegielski, Patrick

  19. Théorie des nombres et informatique

    Cegielski, Patrick; Heroult, François; Richard, Denis

  20. Preface - Logic Colloquium '94, 21-30 July 1994, Clermont-Ferrand, France

    Cegielski, Patrick; Pacholski, Leszek; Richard, Denis; Tomasik, Jerzy; Wilkie, Alex

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.